These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3504973)

  • 1. Hemocompatibility of hydrogel with polyethyleneoxide chains.
    Nakao A; Nagaoka S; Mori Y
    J Biomater Appl; 1987 Oct; 2(2):219-34. PubMed ID: 3504973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new antithrombogenic material with long polyethyleneoxide chains.
    Mori Y; Nagaoka S; Takiuchi H; Kikuchi T; Noguchi N; Tanzawa H; Noishiki Y
    Trans Am Soc Artif Intern Organs; 1982; 28():459-63. PubMed ID: 7164281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPUU-PEO-heparin graft copolymer surfaces. Patency and platelet deposition in canine small diameter arterial grafts.
    Kim WG; Park KD; Mohammad SF; Kim SW
    ASAIO Trans; 1991; 37(3):M148-9. PubMed ID: 1751086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo canine studies of a Sinkhole valve and vascular graft coated with biocompatible PU-PEO-SO3.
    Han DK; Lee KB; Park KD; Kim CS; Jeong SY; Kim YH; Kim HM; Min BG
    ASAIO J; 1993; 39(3):M537-41. PubMed ID: 8268593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning electron microscopy analysis of polyethylene oxide hydrogels for blood contact.
    Verdon SL; Chaikof EL; Coleman JE; Hayes LL; Connolly RJ; Ramberg K; Merrill EW; Callow AD
    Scanning Microsc; 1990 Jun; 4(2):341-9; discussion 349-50. PubMed ID: 2402609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current concepts for assessing blood compatibility: small diameter vascular prostheses.
    Vale BH
    J Biomater Appl; 1987 Jul; 2(1):149-59. PubMed ID: 3333065
    [No Abstract]   [Full Text] [Related]  

  • 7. Blood compatibility of SPUU-PEO-heparin graft copolymers.
    Park KD; Kim WG; Jacobs H; Okano T; Kim SW
    J Biomed Mater Res; 1992 Jun; 26(6):739-56. PubMed ID: 1527098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical application of antithrombogenic hydrogel with long poly(ethylene oxide) chains.
    Nagaoka S; Nakao A
    Biomaterials; 1990 Mar; 11(2):119-21. PubMed ID: 2317533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft.
    Han DK; Park K; Park KD; Ahn KD; Kim YH
    Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo investigation of a new elastomeric vascular graft (Mitrathane).
    Ives CL; Zamora JL; Eskin SG; Weilbaecher DG; Gao ZR; Noon GP; DeBakey ME
    Trans Am Soc Artif Intern Organs; 1984; 30():587-90. PubMed ID: 6549490
    [No Abstract]   [Full Text] [Related]  

  • 11. Reduced thrombogenicity of polymers having phospholipid polar groups.
    Ishihara K; Aragaki R; Ueda T; Watenabe A; Nakabayashi N
    J Biomed Mater Res; 1990 Aug; 24(8):1069-77. PubMed ID: 2394763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glow discharge plasma treatment of polyethylene tubing with tetraglyme results in ultralow fibrinogen adsorption and greatly reduced platelet adhesion.
    Cao L; Sukavaneshvar S; Ratner BD; Horbett TA
    J Biomed Mater Res A; 2006 Dec; 79(4):788-803. PubMed ID: 16883583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and ex vivo platelet interactions with hydrophilic-hydrophobic poly(ethylene oxide)-polystyrene multiblock copolymers.
    Grainger DW; Nojiri C; Okano T; Kim SW
    J Biomed Mater Res; 1989 Sep; 23(9):979-1005. PubMed ID: 2777836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.
    Cai X; Yuan J; Chen S; Li P; Li L; Shen J
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():42-8. PubMed ID: 24433885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of blood components with PDMS (polydimethylsiloxane) and LDPE (low-density polyethylene) in a baboon ex vivo arteriovenous shunt model.
    Keough EM; Mackey WC; Connolly R; Foxall T; Ramberg-Laskaris K; McCullough JL; O'Donnell TF; Callow AD
    J Biomed Mater Res; 1985; 19(5):577-87. PubMed ID: 4066730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers.
    Yuan H; Li B; Liang K; Lou X; Zhang Y
    Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G; Li P; Qiu H; Li D; Su M; Xu K
    J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of a new polymeric material for small caliber vascular prostheses.
    Chaikof EL; Coleman JE; Ramberg K; Connolly RJ; Merrill EW; Callow AD
    J Surg Res; 1989 Sep; 47(3):193-9. PubMed ID: 2770275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical application of modified polyurethane graft to blood access.
    Ota K; Nakagawa Y; Kitano Y; Oshima T; Teraoka S
    Artif Organs; 1991 Dec; 15(6):449-53. PubMed ID: 1763966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo method for testing hemocompatibility of materials used in prosthetic heart valves.
    Yang Y; Franzen S; Tengvall P; Olin C
    J Heart Valve Dis; 1996 Sep; 5(5):526-31. PubMed ID: 8894993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.