BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35049873)

  • 21. Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes.
    Lau DC; Sundh I; Vrede T; Pickova J; Goedkoop W
    Ecology; 2014 Jun; 95(6):1506-19. PubMed ID: 25039216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fatty acid trophic markers in the pelagic marine environment.
    Dalsgaard J; St John M; Kattner G; Müller-Navarra D; Hagen W
    Adv Mar Biol; 2003; 46():225-340. PubMed ID: 14601414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean.
    Boeuf D; Edwards BR; Eppley JM; Hu SK; Poff KE; Romano AE; Caron DA; Karl DM; DeLong EF
    Proc Natl Acad Sci U S A; 2019 Jun; 116(24):11824-11832. PubMed ID: 31127042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.
    Hixson SM; Arts MT
    Glob Chang Biol; 2016 Aug; 22(8):2744-55. PubMed ID: 27070119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.
    Strandberg U; Hiltunen M; Jelkänen E; Taipale SJ; Kainz MJ; Brett MT; Kankaala P
    Sci Total Environ; 2015 Dec; 536():858-865. PubMed ID: 26282609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption.
    Taipale SJ; Vuorio K; Strandberg U; Kahilainen KK; Järvinen M; Hiltunen M; Peltomaa E; Kankaala P
    Environ Int; 2016 Nov; 96():156-166. PubMed ID: 27685803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region.
    Sushchik NN; Yurchenko YA; Gladyshev MI; Belevich OE; Kalachova GS; Kolmakova AA
    Insect Sci; 2013 Oct; 20(5):585-600. PubMed ID: 23956110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatty Acids of Marine Mollusks: Impact of Diet, Bacterial Symbiosis and Biosynthetic Potential.
    Zhukova NV
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31835867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Role of Microbes in the Nutrition of Detritivorous Invertebrates: A Stoichiometric Analysis.
    Anderson TR; Pond DW; Mayor DJ
    Front Microbiol; 2016; 7():2113. PubMed ID: 28101083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase.
    Taipale S; Peltomaa E; Salmi P
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32268552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.
    Tecchio S; van Oevelen D; Soetaert K; Navarro J; Ramírez-Llodra E
    PLoS One; 2013; 8(5):e63796. PubMed ID: 23691098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid composition of the amphipod Dikerogammarus villosus: feeding strategies and trophic links.
    Maazouzi C; Masson G; Izquierdo MS; Pihan JC
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):868-75. PubMed ID: 17383206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-Term Conditioning to Elevated pCO2 and Warming Influences the Fatty and Amino Acid Composition of the Diatom Cylindrotheca fusiformis.
    Bermúdez R; Feng Y; Roleda MY; Tatters AO; Hutchins DA; Larsen T; Boyd PW; Hurd CL; Riebesell U; Winder M
    PLoS One; 2015; 10(5):e0123945. PubMed ID: 25970340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.
    Larson JH; Richardson WB; Knights BC; Bartsch LA; Bartsch MR; Nelson JC; Veldboom JA; Vallazza JM
    PLoS One; 2013; 8(8):e70666. PubMed ID: 23940619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.
    Moi IM; Leow ATC; Ali MSM; Rahman RNZRA; Salleh AB; Sabri S
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5811-5826. PubMed ID: 29749565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Abyssal deposit-feeding rates consistent with the metabolic theory of ecology.
    Durden JM; Bett BJ; Huffard CL; Ruhl HA; Smith KL
    Ecology; 2019 Jan; 100(1):e02564. PubMed ID: 30601573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trophic importance of microphytobenthos and bacteria to meiofauna in soft-bottom intertidal habitats: A combined trophic marker approach.
    van der Heijden LH; Graeve M; Asmus R; Rzeznik-Orignac J; Niquil N; Bernier Q; Guillou G; Asmus H; Lebreton B
    Mar Environ Res; 2019 Aug; 149():50-66. PubMed ID: 31153060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of the fatty acid composition of a deep-sea vent gastropod, Ifremeria nautilei.
    Saito H; Hashimoto J
    Lipids; 2010 Jun; 45(6):537-48. PubMed ID: 20549377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protist diversity and function in the dark ocean - Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists.
    Gooday AJ; Schoenle A; Dolan JR; Arndt H
    Eur J Protistol; 2020 Aug; 75():125721. PubMed ID: 32575029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipids of prokaryotic origin at the base of marine food webs.
    de Carvalho CC; Caramujo MJ
    Mar Drugs; 2012 Dec; 10(12):2698-2714. PubMed ID: 23342392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.