BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35050024)

  • 21. Data set for cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization.
    Wang C; Bao X; Li Y; Jiao C; Hou J; Zhang Q; Zhang W; Liu W; Shen Y
    Data Brief; 2015 Sep; 4():119-26. PubMed ID: 26217774
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ
    Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae.
    Runquist D; Hahn-Hägerdal B; Rådström P
    Biotechnol Biofuels; 2010 Mar; 3():5. PubMed ID: 20236521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering of Pentose Transport in
    Nijland JG; Driessen AJM
    Front Bioeng Biotechnol; 2019; 7():464. PubMed ID: 32064252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.
    Shin HY; Nijland JG; de Waal PP; de Jong RM; Klaassen P; Driessen AJ
    Biotechnol Biofuels; 2015; 8():176. PubMed ID: 26535057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction and application of multi-host integrative vector system for xylose-fermenting yeast.
    Li H; Fan H; Li Y; Shi GY; Ding ZY; Gu ZH; Zhang L
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28873978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production.
    Cadete RM; Rosa CA
    Yeast; 2018 Feb; 35(2):191-199. PubMed ID: 28892565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.
    Jo JH; Park YC; Jin YS; Seo JH
    Bioresour Technol; 2017 Oct; 241():88-94. PubMed ID: 28550778
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae.
    Young EM; Comer AD; Huang H; Alper HS
    Metab Eng; 2012 Jul; 14(4):401-11. PubMed ID: 22445945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans.
    Guo J; Huang S; Chen Y; Guo X; Xiao D
    Microb Cell Fact; 2018 Apr; 17(1):64. PubMed ID: 29712559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.
    Xu JR; Zhao XQ; Liu CG; Bai FW
    Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.
    Cadete RM; Melo MA; Dussán KJ; Rodrigues RC; Silva SS; Zilli JE; Vital MJ; Gomes FC; Lachance MA; Rosa CA
    PLoS One; 2012; 7(8):e43135. PubMed ID: 22912807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast.
    Vasylyshyn R; Kurylenko O; Ruchala J; Shevchuk N; Kuliesiene N; Khroustalyova G; Rapoport A; Daugelavicius R; Dmytruk K; Sibirny A
    Microb Cell Fact; 2020 Apr; 19(1):96. PubMed ID: 32334587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A genetic overhaul of Saccharomyces cerevisiae 424A(LNH-ST) to improve xylose fermentation.
    Bera AK; Ho NW; Khan A; Sedlak M
    J Ind Microbiol Biotechnol; 2011 May; 38(5):617-26. PubMed ID: 20714780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob.
    Kogje A; Ghosalkar A
    3 Biotech; 2016 Dec; 6(2):127. PubMed ID: 28330197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The C-terminal region of the yeast monocarboxylate transporter Jen1 acts as a glucose signal-responding degron recognized by the α-arrestin Rod1.
    Fujita S; Sato D; Kasai H; Ohashi M; Tsukue S; Takekoshi Y; Gomi K; Shintani T
    J Biol Chem; 2018 Jul; 293(28):10926-10936. PubMed ID: 29789424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an important motif that controls the activity and specificity of sugar transporters.
    Wang M; Yu C; Zhao H
    Biotechnol Bioeng; 2016 Jul; 113(7):1460-7. PubMed ID: 26724683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined Cell Surface Display of β-d-Glucosidase (BGL), Maltose Transporter (MAL11), and Overexpression of Cytosolic Xylose Reductase (XR) in Saccharomyces cerevisiae Enhance Cellobiose/Xylose Coutilization for Xylitol Bioproduction from Lignocellulosic Biomass.
    Guirimand GGY; Bamba T; Matsuda M; Inokuma K; Morita K; Kitada Y; Kobayashi Y; Yukawa T; Sasaki K; Ogino C; Hasunuma T; Kondo A
    Biotechnol J; 2019 Sep; 14(9):e1800704. PubMed ID: 31283105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.