BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35050099)

  • 1. Comparative Analysis of Proanthocyanidin Metabolism and Genes Regulatory Network in Fresh Leaves of Two Different Ecotypes of
    Yue E; Huang Y; Qian L; Lu Q; Wang X; Qian H; Yan J; Ruan S
    Plants (Basel); 2022 Jan; 11(2):. PubMed ID: 35050099
    [No Abstract]   [Full Text] [Related]  

  • 2. Flavonoid Metabolism in
    Bai Y; Jiang L; Li Z; Liu S; Hu X; Gao F
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615276
    [No Abstract]   [Full Text] [Related]  

  • 3. Transcriptome and Metabolome Integrated Analysis of Two Ecotypes of
    Yin S; Cui H; Zhang L; Yan J; Qian L; Ruan S
    Plants (Basel); 2021 Jun; 10(7):. PubMed ID: 34202839
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress.
    Peng X; Wu H; Chen H; Zhang Y; Qiu D; Zhang Z
    BMC Genomics; 2019 Aug; 20(1):687. PubMed ID: 31472675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of
    Hang S; Xu P; Zhu S; Ye M; Chen C; Wu X; Liang W; Pu J
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic Analysis of
    Xu H; Dai X; Hu X; Yu H; Wang Y; Zheng B; Xu J; Wu X
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979467
    [No Abstract]   [Full Text] [Related]  

  • 7. Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of
    Li X; Ren X; Su Y; Zhou X; Wang Y; Ruan S; Yan J; Li B; Guo K
    Microbiol Spectr; 2024 Apr; 12(4):e0242523. PubMed ID: 38470484
    [No Abstract]   [Full Text] [Related]  

  • 8. Exogenous titanium dioxide nanoparticles alleviate cadmium toxicity by enhancing the antioxidative capacity of Tetrastigma hemsleyanum.
    Huang Y; Cai S; Ying W; Niu T; Yan J; Hu H; Ruan S
    Ecotoxicol Environ Saf; 2024 Mar; 273():116166. PubMed ID: 38430577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into Metabolic Engineering of Bioactive Molecules in
    Krishna TPA; Maharajan T; Krishna TPA; Ceasar SA
    Curr Genomics; 2023 Oct; 24(2):72-83. PubMed ID: 37994327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The complete chloroplast genome sequence of Tetrastigma hemsleyanum Diels at Gilg.
    Li M; Chen Q; Yang B; Ma J; Li B; Zhang L
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3729-30. PubMed ID: 26329851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of prolonged but low intensity blue light on the physiological properties of root tubers and the accumulation of flavonoids in Tetrastigma hemsleyanum Diels et Gilg.
    Zhao G; Liu W; Zhu H; Duan H; Nie J; Hong S; Wen J
    Plant Physiol Biochem; 2024 Jun; 213():108824. PubMed ID: 38936072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavonoids metabolism and physiological response to ultraviolet treatments in
    Bai Y; Gu Y; Liu S; Jiang L; Han M; Geng D
    Front Plant Sci; 2022; 13():926197. PubMed ID: 36186004
    [No Abstract]   [Full Text] [Related]  

  • 13. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: A valuable Chinese herbal medicine.
    Hu W; Zheng Y; Xia P; Liang Z
    J Ethnopharmacol; 2021 May; 271():113836. PubMed ID: 33465440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the geographical origin of
    Wu Z; Ye X; Bian F; Yu G; Gao G; Ou J; Wang Y; Li Y; Du X
    Heliyon; 2022 Oct; 8(10):e10801. PubMed ID: 36203902
    [No Abstract]   [Full Text] [Related]  

  • 15. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice.
    Feng Z; Hao W; Lin X; Fan D; Zhou J
    Onco Targets Ther; 2014; 7():947-56. PubMed ID: 24959081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tetrastigma hemsleyanum suppresses neuroinflammation in febrile seizures rats via regulating PKC-δ/caspase-1 signaling pathway.
    Ji W; Zhu H; Xing B; Chu C; Ji T; Ge W; Wang J; Peng X
    J Ethnopharmacol; 2024 Jan; 318(Pt A):116912. PubMed ID: 37451489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length transcriptome reveals the pivotal role of ABA and ethylene in the cold stress response of
    Qian L; Yin S; Lu N; Yue E; Yan J
    Front Plant Sci; 2024; 15():1285879. PubMed ID: 38357266
    [No Abstract]   [Full Text] [Related]  

  • 19. Physicochemical characterizations of starches isolated from Tetrastigma hemsleyanum Diels et Gilg.
    Gong W; Liu T; Zhou Z; Wu D; Shu X; Xiong H
    Int J Biol Macromol; 2021 Jul; 183():1540-1547. PubMed ID: 34019925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial mechanism of Tetrastigma hemsleyanum Diels et Gilg's polysaccharides by metabolomics based on HPLC/MS.
    Chen X; Tao L; Ru Y; Weng S; Chen Z; Wang J; Guo L; Lin Z; Pan W; Qiu B
    Int J Biol Macromol; 2019 Nov; 140():206-215. PubMed ID: 31415856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.