These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35050194)

  • 1. Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology.
    Schurr A; Passarella S
    Metabolites; 2022 Jan; 12(1):. PubMed ID: 35050194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue.
    Schurr A
    Front Neurosci; 2018; 12():700. PubMed ID: 30364172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.
    Epstein T; Xu L; Gillies RJ; Gatenby RA
    Cancer Metab; 2014; 2():7. PubMed ID: 24982758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.
    Dienel GA; Cruz NF
    J Neurochem; 2016 Jul; 138(1):14-52. PubMed ID: 27166428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the 'Aerobic/Anaerobic Glycolysis' Meme Formed a 'Habit of Mind' Which Impedes Progress in the Field of Brain Energy Metabolism.
    Schurr A
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.
    Vazquez A; Liu J; Zhou Y; Oltvai ZN
    BMC Syst Biol; 2010 May; 4():58. PubMed ID: 20459610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
    Hu D; Linders A; Yamak A; Correia C; Kijlstra JD; Garakani A; Xiao L; Milan DJ; van der Meer P; Serra M; Alves PM; Domian IJ
    Circ Res; 2018 Oct; 123(9):1066-1079. PubMed ID: 30355156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments.
    Theriault JE; Shaffer C; Dienel GA; Sander CY; Hooker JM; Dickerson BC; Barrett LF; Quigley KS
    Neurosci Biobehav Rev; 2023 Oct; 153():105373. PubMed ID: 37634556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extramitochondrial energy production in platelets.
    Ravera S; Signorello MG; Bartolucci M; Ferrando S; Manni L; Caicci F; Calzia D; Panfoli I; Morelli A; Leoncini G
    Biol Cell; 2018 May; 110(5):97-108. PubMed ID: 29537672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation.
    Parra-Bonilla G; Alvarez DF; Al-Mehdi AB; Alexeyev M; Stevens T
    Am J Physiol Lung Cell Mol Physiol; 2010 Oct; 299(4):L513-22. PubMed ID: 20675437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur.
    Barros LF; Ruminot I; San Martín A; Lerchundi R; Fernández-Moncada I; Baeza-Lehnert F
    Neurochem Res; 2021 Jan; 46(1):15-22. PubMed ID: 31981059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors.
    Phipps C; Molavian H; Kohandel M
    J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements.
    Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD
    J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.