These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35050297)

  • 1. Two-dimensional InSb/GaAs- and InSb/InP-based tandem photovoltaic device with matched bandgap.
    Xie M; Liu X; Li Y; Li X
    Nanoscale; 2022 Feb; 14(5):1954-1961. PubMed ID: 35050297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Dimensional BAs/InTe: A Promising Tandem Solar Cell with High Power Conversion Efficiency.
    Xie M; Cai B; Meng Z; Gu Y; Zhang S; Liu X; Gong L; Li X; Zeng H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6074-6081. PubMed ID: 31957443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of temperature on bandgap shifts, optical properties and photovoltaic parameters of GaAs/AlAs and GaAs/AlSb
    Mamindla R; Niranjan MK
    J Phys Condens Matter; 2024 Feb; 36(20):. PubMed ID: 38330463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically Processed GaInP/InP Tandem-Junction Nanowire Solar Cells.
    Alcer D; Tirrito M; Hrachowina L; Borgström MT
    ACS Appl Nano Mater; 2024 Jan; 7(2):2352-2358. PubMed ID: 38298252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth mechanism and self-polarization of bilayer InSb (111) on Bi (001) substrate.
    Wang B; Wang J; Niu X
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35675806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Quality 100 nm Thick InSb Films Grown on GaAs(001) Substrates with an In
    Kang SS; Park SI; Shin SH; Shim CH; Choi SH; Song JD
    ACS Omega; 2018 Nov; 3(11):14562-14566. PubMed ID: 31458139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum transport in InSb quantum well devices: progress and perspective.
    Lei Z; Cheah E; Schott R; Lehner CA; Zeitler U; Wegscheider W; Ihn T; Ensslin K
    J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38815611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony-Bismuth Alloying: The Key to a Major Boost in the Efficiency of Lead-Free Perovskite-Inspired Photovoltaics.
    Al-Anesi B; Grandhi GK; Pecoraro A; Sugathan V; Viswanath NSM; Ali-Löytty H; Liu M; Ruoko TP; Lahtonen K; Manna D; Toikkonen S; Muñoz-García AB; Pavone M; Vivo P
    Small; 2023 Nov; 19(46):e2303575. PubMed ID: 37452442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Bandgap Definition via a Modified Form of Urbach's Rule.
    Bhowmick M; Xi H; Ullrich B
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Semitransparent Solar Cells with Selective Absorption and Tandem Architecture.
    Zuo L; Shi X; Fu W; Jen AK
    Adv Mater; 2019 Sep; 31(36):e1901683. PubMed ID: 31342575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials.
    García G; Sánchez-Palencia P; Palacios P; Wahnón P
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32046033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells.
    Deng Z; Ning J; Su Z; Xu S; Xing Z; Wang R; Lu S; Dong J; Zhang B; Yang H
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):690-5. PubMed ID: 25479245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Mobility Free-Standing InSb Nanoflags Grown on InP Nanowire Stems for Quantum Devices.
    Verma I; Salimian S; Zannier V; Heun S; Rossi F; Ercolani D; Beltram F; Sorba L
    ACS Appl Nano Mater; 2021 Jun; 4(6):5825-5833. PubMed ID: 34308268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasiparticle semiconductor band structures including spin-orbit interactions.
    Malone BD; Cohen ML
    J Phys Condens Matter; 2013 Mar; 25(10):105503. PubMed ID: 23396813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.
    Lee YJ; Yao YC; Tsai MT; Liu AF; Yang MD; Lai JT
    Opt Express; 2013 Nov; 21 Suppl 6():A953-63. PubMed ID: 24514936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell.
    Cui Y; Yao H; Gao B; Qin Y; Zhang S; Yang B; He C; Xu B; Hou J
    J Am Chem Soc; 2017 May; 139(21):7302-7309. PubMed ID: 28497691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of III-V direct-gap semiconductors for thermoradiative cell applications.
    Hanna MY; Majidi MA; Nugraha ART
    Nanotechnology; 2023 May; 34(31):. PubMed ID: 37137296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth.
    Aseev P; Wang G; Binci L; Singh A; Martí-Sánchez S; Botifoll M; Stek LJ; Bordin A; Watson JD; Boekhout F; Abel D; Gamble J; Van Hoogdalem K; Arbiol J; Kouwenhoven LP; de Lange G; Caroff P
    Nano Lett; 2019 Dec; 19(12):9102-9111. PubMed ID: 31730748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.