These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35050891)

  • 21. The semi-sewer river: hydraulic backwater effects and combined sewer overflow reverse flows in Central Brussels reduce deoxygenation impact further downstream.
    Le HM; Petrovic D; Verbanck MA
    Water Sci Technol; 2014; 69(4):903-8. PubMed ID: 24569294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the efficiency of different CSO positions based on network graph characteristics.
    Sitzenfrei R; Urich C; Möderl M; Rauch W
    Water Sci Technol; 2013; 67(7):1574-80. PubMed ID: 23552247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial variations of pollutants from sewer interception system overflow.
    Chen S; Qin HP; Zheng Y; Fu G
    J Environ Manage; 2019 Mar; 233():748-756. PubMed ID: 30316581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structure design of integrated urban drainage systems: A view of robust optimization.
    Wang Y; Zhang X; Zhang D; Fu G; Dong X; Zeng S
    J Environ Manage; 2022 Nov; 322():116050. PubMed ID: 36057180
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Management of combined sewer overflows based on observations from the urbanized Liguori catchment of Cosenza, Italy.
    Piro P; Carbone M; Garofalo G; Sansalone JJ
    Water Sci Technol; 2010; 61(1):135-43. PubMed ID: 20057099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
    Chen W; Huang G; Zhang H
    Water Sci Technol; 2017 Dec; 76(11-12):3392-3403. PubMed ID: 29236018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rainfall-Runoff Simulations to Assess the Potential of SuDS for Mitigating Flooding in Highly Urbanized Catchments.
    Jato-Espino D; Charlesworth SM; Bayon JR; Warwick F
    Int J Environ Res Public Health; 2016 Jan; 13(1):. PubMed ID: 26805864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization.
    Rezaei AR; Ismail Z; Niksokhan MH; Dayarian MA; Ramli AH; Yusoff S
    Environ Monit Assess; 2021 Mar; 193(4):241. PubMed ID: 33791871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of ecotoxicological risks related to the Discharge of Combined Sewer Overflows (CSOs) in a periurban River.
    Angerville R; Perrodin Y; Bazin C; Emmanuel E
    Int J Environ Res Public Health; 2013 Jun; 10(7):2670-87. PubMed ID: 23812025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation to urbanization impacts on drainage in the city of Hohhot, China.
    Zhou Q; Ren Y; Xu M; Han N; Wang H
    Water Sci Technol; 2016; 73(1):167-75. PubMed ID: 26744948
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management.
    Liang ZS; Sun J; Chau HK; Leong EI; Wu D; Chen GH; Jiang F
    Environ Int; 2019 Oct; 131():105011. PubMed ID: 31374444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.
    Brzezińska A; Zawilski M; Sakson G
    Environ Monit Assess; 2016 Sep; 188(9):502. PubMed ID: 27488195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prioritization of stormwater management sites in urban areas.
    Simperler L; Himmelbauer P; Ertl T; Stoeglehner G
    J Environ Manage; 2020 Jul; 265():110507. PubMed ID: 32292170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full Water-Cycle Monitoring in an Urban Catchment Reveals Unexpected Water Transfers (Detroit MI, USA).
    Hoard CJ; Haefner RJ; Shuster WD; Pieschek RL; Beeler S
    J Am Water Resour Assoc; 2020 Feb; 56(1):82-99. PubMed ID: 32801611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flood forecasting within urban drainage systems using NARX neural network.
    Abou Rjeily Y; Abbas O; Sadek M; Shahrour I; Hage Chehade F
    Water Sci Technol; 2017 Nov; 76(9-10):2401-2412. PubMed ID: 29144298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An agent-based approach for generating virtual sewer systems.
    Urich C; Sitzenfrei R; Möderl M; Rauch W
    Water Sci Technol; 2010; 62(5):1090-7. PubMed ID: 20818050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local effects of global climate change on the urban drainage system of Hamburg.
    Krieger K; Kuchenbecker A; Hüffmeyer N; Verworn HR
    Water Sci Technol; 2013; 68(5):1107-13. PubMed ID: 24037163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A data-driven improved fuzzy logic control optimization-simulation tool for reducing flooding volume at downstream urban drainage systems.
    Li J
    Sci Total Environ; 2020 Aug; 732():138931. PubMed ID: 32445990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Priority pollutants in urban stormwater: part 2 - case of combined sewers.
    Gasperi J; Zgheib S; Cladière M; Rocher V; Moilleron R; Chebbo G
    Water Res; 2012 Dec; 46(20):6693-703. PubMed ID: 22000716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.
    Liao ZL; Zhang GQ; Wu ZH; He Y; Chen H
    Water Sci Technol; 2015; 71(8):1136-42. PubMed ID: 25909722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.