BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35051008)

  • 1. Regulation of
    Pennings JLA; Abachin E; Esson R; Hodemaekers H; Francotte A; Claude JB; Vanhee C; Uhlrich S; Vandebriel RJ
    Toxins (Basel); 2022 Jan; 14(1):. PubMed ID: 35051008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetanus Toxin Synthesis is Under the Control of A Complex Network of Regulatory Genes in
    Chapeton-Montes D; Plourde L; Deneve C; Garnier D; Barbirato F; Colombié V; Demay S; Haustant G; Gorgette O; Schmitt C; Thouvenot C; Brüggemann H; Popoff MR
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32429286
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection of Clostridium tetani in human clinical samples using tetX specific primers targeting the neurotoxin.
    Ganesh M; Sheikh NK; Shah P; Mehetre G; Dharne MS; Nagoba BS
    J Infect Public Health; 2016; 9(1):105-9. PubMed ID: 26220795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a targeted LC-MS/MS quantitation method to monitor cell culture expression of tetanus neurotoxin during vaccine production.
    Francotte A; Esson R; Abachin E; Vanhamme M; Dobly A; Carpick B; Uhlrich S; Dierick JF; Vanhee C
    Talanta; 2022 Jan; 236():122883. PubMed ID: 34635263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory Networks Controlling Neurotoxin Synthesis in
    Popoff MR; Brüggemann H
    Toxins (Basel); 2022 May; 14(6):. PubMed ID: 35737025
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular Methods for Identification of Clostridium tetani by Targeting Neurotoxin.
    Nagoba B; Dharne M; Gohil KN
    Methods Mol Biol; 2017; 1600():37-47. PubMed ID: 28478555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The population structure of Clostridium tetani deduced from its pan-genome.
    Chapeton-Montes D; Plourde L; Bouchier C; Ma L; Diancourt L; Criscuolo A; Popoff MR; Brüggemann H
    Sci Rep; 2019 Aug; 9(1):11220. PubMed ID: 31375706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a non-coding RNA and its putative involvement in the regulation of tetanus toxin synthesis in Clostridium tetani.
    Brüggemann H; Chapeton-Montes D; Plourde L; Popoff MR
    Sci Rep; 2021 Feb; 11(1):4157. PubMed ID: 33603121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani.
    Raffestin S; Dupuy B; Marvaud JC; Popoff MR
    Mol Microbiol; 2005 Jan; 55(1):235-49. PubMed ID: 15612931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.
    Connan C; Denève C; Mazuet C; Popoff MR
    Toxicon; 2013 Dec; 75():90-100. PubMed ID: 23769754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR.
    Marvaud JC; Eisel U; Binz T; Niemann H; Popoff MR
    Infect Immun; 1998 Dec; 66(12):5698-702. PubMed ID: 9826344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A next-generation sequencing based method for determining genetic stability in Clostridium tetani vaccine strains.
    Pennings JLA; Abachin E; Uhlrich S; Esson R; Mallet L; Vandebriel RJ
    Biologicals; 2020 Mar; 64():10-14. PubMed ID: 32057566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-gas bubbling during the cultivation of Clostridium tetani produces a higher yield of tetanus toxin for the preparation of its toxoid.
    De Luca MM; Abeiro HD; Bernagozzi JA; Basualdo JA
    Microbiol Immunol; 1997; 41(2):161-3. PubMed ID: 9087958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the effect of a biostimulant on the growth and toxigenic function of Clostridium tetani strain Copenhagen-471].
    Garib FIu; Petrov VIu; Komarova EA; Sheremet'ev NN
    Zh Mikrobiol Epidemiol Immunobiol; 2002; (6):73-5. PubMed ID: 12506634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative pathogenomics of Clostridium tetani.
    Cohen JE; Wang R; Shen RF; Wu WW; Keller JE
    PLoS One; 2017; 12(8):e0182909. PubMed ID: 28800585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomics of Clostridium tetani.
    Brüggemann H; Brzuszkiewicz E; Chapeton-Montes D; Plourde L; Speck D; Popoff MR
    Res Microbiol; 2015 May; 166(4):326-31. PubMed ID: 25638019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequencing and phylogenetic analysis of neurotoxin gene from an environmental isolate of Clostridium sp.: comparison with other clostridial neurotoxins.
    Dixit A; Alam SI; Singh L
    Arch Toxicol; 2006 Jul; 80(7):399-404. PubMed ID: 16474961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into Clostridium tetani: From genome to bioreactors.
    Garrigues L; Do TD; Bideaux C; Guillouet SE; Meynial-Salles I
    Biotechnol Adv; 2022; 54():107781. PubMed ID: 34029623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani.
    Orellana CA; Zaragoza NE; Licona-Cassani C; Palfreyman RW; Cowie N; Moonen G; Moutafis G; Power J; Nielsen LK; Marcellin E
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1059-1073. PubMed ID: 33175241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient Clostridium DNA and variants of tetanus neurotoxins associated with human archaeological remains.
    Hodgins HP; Chen P; Lobb B; Wei X; Tremblay BJM; Mansfield MJ; Lee VCY; Lee PG; Coffin J; Duggan AT; Dolphin AE; Renaud G; Dong M; Doxey AC
    Nat Commun; 2023 Sep; 14(1):5475. PubMed ID: 37673908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.