These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 35051352)

  • 1. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
    Hsieh SC; Peters JE
    Annu Rev Biochem; 2024 Aug; 93(1):139-161. PubMed ID: 38598855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomic discovery of CRISPR-associated transposons.
    Rybarski JR; Hu K; Hill AM; Wilke CO; Finkelstein IJ
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
    Swarts DC; van der Oost J; Jinek M
    Mol Cell; 2017 Apr; 66(2):221-233.e4. PubMed ID: 28431230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment of CRISPR-Cas systems by Tn7-like transposons.
    Peters JE; Makarova KS; Shmakov S; Koonin EV
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7358-E7366. PubMed ID: 28811374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scoutRNA Is Required for Some Type V CRISPR-Cas Systems.
    Harrington LB; Ma E; Chen JS; Witte IP; Gertz D; Paez-Espino D; Al-Shayeb B; Kyrpides NC; Burstein D; Banfield JF; Doudna JA
    Mol Cell; 2020 Aug; 79(3):416-424.e5. PubMed ID: 32645367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the holo CRISPR RNA-guided transposon integration complex.
    Park JU; Tsai AW; Rizo AN; Truong VH; Wellner TX; Schargel RD; Kellogg EH
    Nature; 2023 Jan; 613(7945):775-782. PubMed ID: 36442503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TnpB homologues exapted from transposons are RNA-guided transcription factors.
    Wiegand T; Hoffmann FT; Walker MWG; Tang S; Richard E; Le HC; Meers C; Sternberg SH
    Nature; 2024 Jul; 631(8020):439-448. PubMed ID: 38926585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
    Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA
    Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
    Koonin EV; Makarova KS
    Genome Biol Evol; 2017 Oct; 9(10):2812-2825. PubMed ID: 28985291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
    Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G
    Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial genome engineering using CRISPR-associated transposases.
    Gelsinger DR; Vo PLH; Klompe SE; Ronda C; Wang HH; Sternberg SH
    Nat Protoc; 2024 Mar; 19(3):752-790. PubMed ID: 38216671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of DNA targeting by a transposon-encoded CRISPR-Cas system.
    Halpin-Healy TS; Klompe SE; Sternberg SH; Fernández IS
    Nature; 2020 Jan; 577(7789):271-274. PubMed ID: 31853065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
    Trujillo Rodríguez L; Ellington AJ; Reisch CR; Chevrette MG
    ACS Synth Biol; 2023 Jul; 12(7):1989-2003. PubMed ID: 37368499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry.
    Rollins MF; Chowdhury S; Carter J; Golden SM; Miettinen HM; Santiago-Frangos A; Faith D; Lawrence CM; Lander GC; Wiedenheft B
    Mol Cell; 2019 Apr; 74(1):132-142.e5. PubMed ID: 30872121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.