BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35051475)

  • 1. ChIP-seq assay revealed histone modification H3K9ac involved in heat shock response of the sea cucumber Apostichopus japonicus.
    Xu D; Fang H; Liu J; Chen Y; Gu Y; Sun G; Xia B
    Sci Total Environ; 2022 May; 820():153168. PubMed ID: 35051475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding microRNAs regulation in heat shock response in the sea cucumber Apostichopus japonicus.
    Li C; Xu D
    Fish Shellfish Immunol; 2018 Oct; 81():214-220. PubMed ID: 30016683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine Acetylation is an Important Post-Translational Modification that Modulates Heat Shock Response in the Sea Cucumber
    Xu D; Wang X
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31505730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-seq based transcriptional analysis reveals dynamic genes expression profiles and immune-associated regulation under heat stress in Apostichopus japonicus.
    Xu D; Zhou S; Sun L
    Fish Shellfish Immunol; 2018 Jul; 78():169-176. PubMed ID: 29684611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning of hsf1 and hsbp1 cDNAs, and the expression of hsf1, hsbp1 and hsp70 under heat stress in the sea cucumber Apostichopus japonicus.
    Xu D; Sun L; Liu S; Zhang L; Yang H
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Aug; 198():1-9. PubMed ID: 26952354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exosomal microRNAs regulate the heat stress response in sea cucumber Apostichopus japonicus.
    Huo D; Su F; Yang H; Sun L
    Ecotoxicol Environ Saf; 2023 Jan; 249():114419. PubMed ID: 36527848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning of heat shock protein 10 (Hsp10) and 60 (Hsp60) cDNAs and their expression analysis under thermal stress in the sea cucumber Apostichopus japonicus.
    Xu D; Sun L; Liu S; Zhang L; Ru X; Zhao Y; Yang H
    Comp Biochem Physiol B Biochem Mol Biol; 2014 May; 171():49-57. PubMed ID: 24721556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression.
    Zhou J; Wang X; He K; Charron JB; Elling AA; Deng XW
    Plant Mol Biol; 2010 Apr; 72(6):585-95. PubMed ID: 20054610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic and Epigenomic Assessment Reveals Epigenetic Regulation of WRKY Genes in Response to
    Xu Y; Miao Y; Tian X; Wang Q; Hu Y; Luo Q
    Curr Genomics; 2022 Jul; 23(3):182-194. PubMed ID: 36777006
    [No Abstract]   [Full Text] [Related]  

  • 10. Global N
    Shao Y; Duan X; Zhao X; Lv Z; Li C
    Dev Comp Immunol; 2022 Aug; 133():104434. PubMed ID: 35562078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus.
    Huo D; Sun L; Zhang L; Ru X; Liu S; Yang X; Yang H
    J Proteomics; 2019 Feb; 193():27-43. PubMed ID: 30579964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drought-inducible changes in the histone modification H3K9ac are associated with drought-responsive gene expression in Brachypodium distachyon.
    Song J; Henry H; Tian L
    Plant Biol (Stuttg); 2020 May; 22(3):433-440. PubMed ID: 31628708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Heat Shock Response in the Sea Cucumber Apostichopus japonicus, Using iTRAQ-Based Proteomics.
    Xu D; Sun L; Liu S; Zhang L; Yang H
    Int J Mol Sci; 2016 Feb; 17(2):150. PubMed ID: 26861288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenomic Evaluation of Cholangiocyte Transforming Growth Factor-β Signaling Identifies a Selective Role for Histone 3 Lysine 9 Acetylation in Biliary Fibrosis.
    Aseem SO; Jalan-Sakrikar N; Chi C; Navarro-Corcuera A; De Assuncao TM; Hamdan FH; Chowdhury S; Banales JM; Johnsen SA; Shah VH; Huebert RC
    Gastroenterology; 2021 Feb; 160(3):889-905.e10. PubMed ID: 33058867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core promoter structure and genomic context reflect histone 3 lysine 9 acetylation patterns.
    Kratz A; Arner E; Saito R; Kubosaki A; Kawai J; Suzuki H; Carninci P; Arakawa T; Tomita M; Hayashizaki Y; Daub CO
    BMC Genomics; 2010 Apr; 11():257. PubMed ID: 20409305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.
    Xu D; Sun L; Liu S; Zhang L; Yang H
    Fish Shellfish Immunol; 2015 Aug; 45(2):321-6. PubMed ID: 25917397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus.
    Ding K; Zhang L; Sun L; Lin C; Feng Q; Zhang S; Yang H; Brinkman R; Lin G; Huang Z
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():143-157. PubMed ID: 30851504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global Decrease in H3K9 Acetylation in Sorghum Seed Postgermination Stages.
    Zhou H; Yuan Z; Han S; He H; Rong J; Guo D; Zhang Y; Zhang D; Liu X; Zhou C
    J Agric Food Chem; 2023 Apr; 71(14):5836-5850. PubMed ID: 36994885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome-level genome assembly of the sea cucumber Apostichopus japonicus.
    Sun L; Jiang C; Su F; Cui W; Yang H
    Sci Data; 2023 Jul; 10(1):454. PubMed ID: 37443361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course analysis of immunity-related gene expression in the sea cucumber Apostichopus japonicus during exposure to thermal and hypoxic stress.
    Huo D; Sun L; Zhang L; Yang H; Liu S; Sun J; Su F
    Fish Shellfish Immunol; 2019 Dec; 95():383-390. PubMed ID: 31585241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.