These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35051522)
41. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Castelvetro V; Corti A; Biale G; Ceccarini A; Degano I; La Nasa J; Lomonaco T; Manariti A; Manco E; Modugno F; Vinciguerra V Environ Sci Pollut Res Int; 2021 Sep; 28(34):46764-46780. PubMed ID: 33502712 [TBL] [Abstract][Full Text] [Related]
42. Dynamic probabilistic material flow analysis of rubber release from tires into the environment. Sieber R; Kawecki D; Nowack B Environ Pollut; 2020 Mar; 258():113573. PubMed ID: 31838384 [TBL] [Abstract][Full Text] [Related]
43. Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO O'Brien AM; Lins TF; Yang Y; Frederickson ME; Sinton D; Rochman CM Environ Res; 2022 Jan; 203():111727. PubMed ID: 34339696 [TBL] [Abstract][Full Text] [Related]
44. Exploring the Potential Hormonal Effects of Tire Polymers (TPs) on Different Species Based on a Theoretical Computational Approach. Wang Y; Yang H; He W; Sun P; Zhao W; Liu M Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050333 [TBL] [Abstract][Full Text] [Related]
46. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Liu M; Lu S; Song Y; Lei L; Hu J; Lv W; Zhou W; Cao C; Shi H; Yang X; He D Environ Pollut; 2018 Nov; 242(Pt A):855-862. PubMed ID: 30036839 [TBL] [Abstract][Full Text] [Related]
47. Quantitative assessment of additive leachates in abiotic weathered tire cryogrinds and its application to tire wear particles in roadside soil samples. Thomas J; Cutright T; Pugh C; Soucek MD Chemosphere; 2023 Jan; 311(Pt 2):137132. PubMed ID: 36343731 [TBL] [Abstract][Full Text] [Related]
48. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Leads RR; Weinstein JE Mar Pollut Bull; 2019 Aug; 145():569-582. PubMed ID: 31590826 [TBL] [Abstract][Full Text] [Related]
49. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber. Yang Q; Yu S; Zhong H; Liu T; Yao E; Zhang Y; Zou H; Du W J Hazard Mater; 2021 Jan; 401():123302. PubMed ID: 32653782 [TBL] [Abstract][Full Text] [Related]
50. Road de-icing salt: Assessment of a potential new source and pathway of microplastics particles from roads. Rødland ES; Okoffo ED; Rauert C; Heier LS; Lind OC; Reid M; Thomas KV; Meland S Sci Total Environ; 2020 Oct; 738():139352. PubMed ID: 32806381 [TBL] [Abstract][Full Text] [Related]
51. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Yukioka S; Tanaka S; Nabetani Y; Suzuki Y; Ushijima T; Fujii S; Takada H; Van Tran Q; Singh S Environ Pollut; 2020 Jan; 256():113447. PubMed ID: 31679875 [TBL] [Abstract][Full Text] [Related]
52. Influence of polyethylene-microplastic on environmental behaviors of metals in soil. Li M; Wu D; Wu D; Guo H; Han S Environ Sci Pollut Res Int; 2021 Jun; 28(22):28329-28336. PubMed ID: 33538977 [TBL] [Abstract][Full Text] [Related]
53. Examining sampling protocols for microplastics on recreational trails. Forster NA; Wilson SC; Tighe MK Sci Total Environ; 2022 Apr; 818():151813. PubMed ID: 34813817 [TBL] [Abstract][Full Text] [Related]
54. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Cao L; Wu D; Liu P; Hu W; Xu L; Sun Y; Wu Q; Tian K; Huang B; Yoon SJ; Kwon BO; Khim JS Sci Total Environ; 2021 Nov; 794():148694. PubMed ID: 34198075 [TBL] [Abstract][Full Text] [Related]
55. Use of a deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Unice KM; Kreider ML; Panko JM Int J Environ Res Public Health; 2012 Nov; 9(11):4033-55. PubMed ID: 23202830 [TBL] [Abstract][Full Text] [Related]
56. Comparison of tire and road wear particle concentrations in sediment for watersheds in France, Japan, and the United States by quantitative pyrolysis GC/MS analysis. Unice KM; Kreider ML; Panko JM Environ Sci Technol; 2013 Aug; 47(15):8138-47. PubMed ID: 23841521 [TBL] [Abstract][Full Text] [Related]
57. Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber. Dolar A; Drobne D; Narat M; Jemec Kokalj A Environ Pollut; 2022 Dec; 314():120233. PubMed ID: 36152721 [TBL] [Abstract][Full Text] [Related]
58. Environmental occurrence, fate, impact, and potential solution of tire microplastics: Similarities and differences with tire wear particles. Luo Z; Zhou X; Su Y; Wang H; Yu R; Zhou S; Xu EG; Xing B Sci Total Environ; 2021 Nov; 795():148902. PubMed ID: 34328941 [TBL] [Abstract][Full Text] [Related]
59. Finding Microplastics in Soils: A Review of Analytical Methods. Möller JN; Löder MGJ; Laforsch C Environ Sci Technol; 2020 Feb; 54(4):2078-2090. PubMed ID: 31999440 [TBL] [Abstract][Full Text] [Related]
60. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Dümichen E; Barthel AK; Braun U; Bannick CG; Brand K; Jekel M; Senz R Water Res; 2015 Nov; 85():451-7. PubMed ID: 26376022 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]