These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35051523)

  • 1. A time-since-infection model for populations with two pathogens.
    Pfab F; Nisbet RM; Briggs CJ
    Theor Popul Biol; 2022 Apr; 144():1-12. PubMed ID: 35051523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discrete-time Kermack-McKendrick model: A versatile and computationally attractive framework for modeling epidemics.
    Diekmann O; Othmer HG; Planqué R; Bootsma MCJ
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34561307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When and why direct transmission models can be used for environmentally persistent pathogens.
    Benson L; Davidson RS; Green DM; Hoyle A; Hutchings MR; Marion G
    PLoS Comput Biol; 2021 Dec; 17(12):e1009652. PubMed ID: 34851954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase.
    Adimy M; Chekroun A; Ferreira CP
    Math Biosci Eng; 2019 Nov; 17(2):1329-1354. PubMed ID: 32233581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the reproduction number in epidemics.
    Batista M
    J Biol Dyn; 2021 Dec; 15(1):623-634. PubMed ID: 34802398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global stability properties of a class of renewal epidemic models.
    Meehan MT; Cocks DG; Müller J; McBryde ES
    J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Kermack-McKendrick epidemic model revisited.
    Brauer F
    Math Biosci; 2005 Dec; 198(2):119-31. PubMed ID: 16135371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic procedure for incorporating separable static heterogeneity into compartmental epidemic models.
    Diekmann O; Inaba H
    J Math Biol; 2023 Jan; 86(2):29. PubMed ID: 36637527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality.
    Bacaër N
    J Math Biol; 2012 Feb; 64(3):403-22. PubMed ID: 21404076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Back to the Roots: A Discrete Kermack-McKendrick Model Adapted to Covid-19.
    Kreck M; Scholz E
    Bull Math Biol; 2022 Feb; 84(4):44. PubMed ID: 35175463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete epidemic models with arbitrary stage distributions and applications to disease control.
    Hernandez-Ceron N; Feng Z; Castillo-Chavez C
    Bull Math Biol; 2013 Oct; 75(10):1716-46. PubMed ID: 23797790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent infectivity and flexible latent and infectious periods in compartmental models of plant disease.
    Cunniffe NJ; Stutt RO; van den Bosch F; Gilligan CA
    Phytopathology; 2012 Apr; 102(4):365-80. PubMed ID: 22106830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission.
    David JF; Iyaniwura SA; Ward MJ; Brauer F
    Math Biosci Eng; 2020 Apr; 17(4):3294-3328. PubMed ID: 32987531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemic models with uncertainty in the reproduction number.
    Roberts MG
    J Math Biol; 2013 Jun; 66(7):1463-74. PubMed ID: 22562623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ziegler and Nichols meet Kermack and McKendrick: Parsimony in dynamic models for epidemiology.
    Nikolaou M
    Comput Chem Eng; 2022 Jan; 157():107615. PubMed ID: 34961800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fractional Order Recovery SIR Model from a Stochastic Process.
    Angstmann CN; Henry BI; McGann AV
    Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge-Based Compartmental Modelling of an SIR Epidemic on a Dual-Layer Static-Dynamic Multiplex Network with Tunable Clustering.
    Barnard RC; Kiss IZ; Berthouze L; Miller JC
    Bull Math Biol; 2018 Oct; 80(10):2698-2733. PubMed ID: 30136212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discussion: the Kermack-McKendrick epidemic threshold theorem.
    Anderson RM
    Bull Math Biol; 1991; 53(1-2):3-32. PubMed ID: 2059740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.