These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35051695)

  • 41. A Novel High-Speed Resonant Frequency Tracking Method Using Transient Characteristics in a Piezoelectric Transducer.
    Moon J; Park S; Lim S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Systematic design and experimental realization of a radially cascaded spherical piezoelectric transducer.
    Tang Y; Lin S
    J Acoust Soc Am; 2023 Sep; 154(3):1838-1849. PubMed ID: 37728287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of the Transmission Performance of Piezoelectric Micromachined Ultrasound Transducers by Vibration Mode Optimization.
    Li P; Fan Z; Duan X; Cui D; Zang J; Zhang Z; Xue C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer.
    Hejazi MM; Jadidian B; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1840-7. PubMed ID: 22899131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Exact and Practical Analyzing Model for Radial Vibration of Piezoelectric Spherical Transducers With Arbitrary Wall Thickness.
    Wang S; Lin S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):760-766. PubMed ID: 32755856
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stepped-plate ultrasonic transducer used as a source of harmonic radiation force optimized by genetic algorithm.
    Selicani GV; Buiochi F
    Ultrasonics; 2021 Sep; 116():106505. PubMed ID: 34217912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Limits and Opportunities for Miniaturizing Ultrasonic Surgical Devices Based on a Langevin Transducer.
    Li X; Stritch T; Manley K; Lucas M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2543-2553. PubMed ID: 33690118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on the high power air-coupled ultrasonic compound transducer.
    Lin S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e545-8. PubMed ID: 16793074
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complete ultrasonic transducer characterization and its use for models and measurements.
    Schmerr LW; Lopez-Sanchez A; Huang R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e753-7. PubMed ID: 16797047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the electromechanical impedance technique for the assessment of dental implant stability.
    LaMalfa Ribolla E; Rizzo P
    J Biomech; 2015 Jul; 48(10):1713-20. PubMed ID: 26070645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PSpice Modeling of a Sandwich Piezoelectric Ceramic Ultrasonic Transducer in Longitudinal Vibration.
    Wei X; Yang Y; Yao W; Zhang L
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28973996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Piezoelectric circular ring flexural transducers.
    Aronov BS
    J Acoust Soc Am; 2013 Aug; 134(2):1021-30. PubMed ID: 23927101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical Study and Optimization of a Novel Piezoelectric Transducer for a Round-Window Stimulating Type Middle-Ear Implant.
    Liu H; Wang H; Rao Z; Yang J; Yang S
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30634413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A low-frequency longitudinal vibration transducer with a helical slot structure.
    Bai J; Zhang G; Zhang X
    J Acoust Soc Am; 2019 May; 145(5):2948. PubMed ID: 31153312
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Research on a Novel Exciting Method for a Sandwich Transducer Operating in Longitudinal-Bending Hybrid Modes.
    Liu Y; Shen Q; Shi S; Deng J; Chen W; Wang L
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28653973
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spherical piezoelectric transducers of functionally graded materials.
    Wang S; Chen C; Hu L; Lin S
    J Acoust Soc Am; 2022 Jul; 152(1):193. PubMed ID: 35931503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Can Mn:PIN-PMN-PT piezocrystal replace hard piezoceramic in power ultrasonic devices?
    Li X; Giuseppe Fenu N; Giles-Donovan N; Cochran S; Lucas M
    Ultrasonics; 2024 Mar; 138():107257. PubMed ID: 38335919
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic circuit optimization design and thermal analysis of the giant magnetostrictive transducer.
    Liu Q; He X
    Ultrasonics; 2023 Aug; 133():107031. PubMed ID: 37182316
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bending Vibration Characteristics of a Novel Piezoelectric Composite Trilaminar Vibrator.
    Lv N; Zhong C; Wang J; Wang L
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and Fabrication of High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Based on an AlN Thin Film.
    Zang J; Fan Z; Li P; Duan X; Wu C; Cui D; Xue C
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.