These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35051918)

  • 1. Alginate in corneal tissue engineering.
    Kostenko A; Swioklo S; Connon CJ
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35051918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review.
    Hernández-González AC; Téllez-Jurado L; Rodríguez-Lorenzo LM
    Carbohydr Polym; 2020 Feb; 229():115514. PubMed ID: 31826429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging tissue engineering strategies for the corneal regeneration.
    Tafti MF; Aghamollaei H; Moghaddam MM; Jadidi K; Alio JL; Faghihi S
    J Tissue Eng Regen Med; 2022 Aug; 16(8):683-706. PubMed ID: 35585479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofabrication paradigms in corneal regeneration: bridging bioprinting techniques, natural bioinks, and stem cell therapeutics.
    Pal P; Sambhakar S; Paliwal S; Kumar S; Kalsi V
    J Biomater Sci Polym Ed; 2024 Apr; 35(5):717-755. PubMed ID: 38214998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative approaches as alternatives to donor allografting for restoration of corneal function.
    Griffith M; Polisetti N; Kuffova L; Gallar J; Forrester J; Vemuganti GK; Fuchsluger TA
    Ocul Surf; 2012 Jul; 10(3):170-83. PubMed ID: 22814644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.
    Kundu J; Shim JH; Jang J; Kim SW; Cho DW
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin nanofiber-reinforced alginate gel scaffolds for corneal tissue engineering.
    Tonsomboon K; Strange DG; Oyen ML
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6671-4. PubMed ID: 24111273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of alginate-based hydrogel bioprinting for application in tissue engineering.
    Rastogi P; Kandasubramanian B
    Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication.
    Bonani W; Cagol N; Maniglio D
    Adv Exp Med Biol; 2020; 1250():49-61. PubMed ID: 32601937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.
    Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S
    Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
    Tonsomboon K; Oyen ML
    J Mech Behav Biomed Mater; 2013 May; 21():185-94. PubMed ID: 23566770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications.
    Naghieh S; Sarker MD; Abelseth E; Chen X
    J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering Approaches for Corneal Regenerative Medicine.
    Mahdavi SS; Abdekhodaie MJ; Mashayekhan S; Baradaran-Rafii A; Djalilian AR
    Tissue Eng Regen Med; 2020 Oct; 17(5):567-593. PubMed ID: 32696417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting for artificial cornea: Challenges and perspectives.
    Zhang B; Xue Q; Li J; Ma L; Yao Y; Ye H; Cui Z; Yang H
    Med Eng Phys; 2019 Sep; 71():68-78. PubMed ID: 31201014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes.
    Zhang B; Xue Q; Hu HY; Yu MF; Gao L; Luo YC; Li Y; Li JT; Ma L; Yao YF; Yang HY
    J Zhejiang Univ Sci B; 2019 Dec.; 20(12):945-959. PubMed ID: 31749342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal regeneration: A review of stromal replacements.
    Matthyssen S; Van den Bogerd B; Dhubhghaill SN; Koppen C; Zakaria N
    Acta Biomater; 2018 Mar; 69():31-41. PubMed ID: 29374600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting endothelial cells with alginate for 3D tissue constructs.
    Khalil S; Sun W
    J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biopolymer-based scaffolds for corneal stromal regeneration: A review.
    Nosrati H; Ashrafi-Dehkordi K; Alizadeh Z; Sanami S; Banitalebi-Dehkordi M
    Polim Med; 2020; 50(2):57-64. PubMed ID: 33181005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.