These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35051918)
21. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
22. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
23. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
24. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Grijalvo S; Nieto-Díaz M; Maza RM; Eritja R; Díaz DD Biotechnol J; 2019 Dec; 14(12):e1900275. PubMed ID: 31677223 [TBL] [Abstract][Full Text] [Related]
25. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. Xing L; Sun J; Tan H; Yuan G; Li J; Jia Y; Xiong D; Chen G; Lai J; Ling Z; Chen Y; Niu X Int J Biol Macromol; 2019 Apr; 127():340-348. PubMed ID: 30658141 [TBL] [Abstract][Full Text] [Related]
26. The potential impact of polyethylenimine on biological behavior of 3D-printed alginate scaffolds. Khoshnood N; Zamanian A; Abbasi M Int J Biol Macromol; 2021 May; 178():19-28. PubMed ID: 33636258 [TBL] [Abstract][Full Text] [Related]
27. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. Schütz K; Placht AM; Paul B; Brüggemeier S; Gelinsky M; Lode A J Tissue Eng Regen Med; 2017 May; 11(5):1574-1587. PubMed ID: 26202781 [TBL] [Abstract][Full Text] [Related]
28. Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Xu M; Qin M; Cheng Y; Niu X; Kong J; Zhang X; Huang D; Wang H Carbohydr Polym; 2021 Aug; 266():118128. PubMed ID: 34044944 [TBL] [Abstract][Full Text] [Related]
30. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds. Rajaram A; Schreyer DJ; Chen DX J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399 [TBL] [Abstract][Full Text] [Related]
31. The artificial cornea. Polisetti N; Islam MM; Griffith M Methods Mol Biol; 2013; 1014():45-52. PubMed ID: 23690003 [TBL] [Abstract][Full Text] [Related]
32. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985 [TBL] [Abstract][Full Text] [Related]
33. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications. Müller M; Öztürk E; Arlov Ø; Gatenholm P; Zenobi-Wong M Ann Biomed Eng; 2017 Jan; 45(1):210-223. PubMed ID: 27503606 [TBL] [Abstract][Full Text] [Related]
35. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313 [TBL] [Abstract][Full Text] [Related]
36. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
37. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Luo Y; Lin X; Chen B; Wei X Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520 [TBL] [Abstract][Full Text] [Related]
38. Alginate-Based Composites for Corneal Regeneration: The Optimization of a Biomaterial to Overcome Its Limits. Tarsitano M; Cristiano MC; Fresta M; Paolino D; Rafaniello C Gels; 2022 Jul; 8(7):. PubMed ID: 35877516 [TBL] [Abstract][Full Text] [Related]
39. Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Liu W; Madry H; Cucchiarini M Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163071 [TBL] [Abstract][Full Text] [Related]
40. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]