These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35051994)

  • 41. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Percutaneous absorption of neat and aqueous solutions of 2-butoxyethanol in volunteers.
    Jakasa I; Mohammadi N; Krüse J; Kezic S
    Int Arch Occup Environ Health; 2004 Feb; 77(2):79-84. PubMed ID: 12915943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomonitoring as a tool in the human health risk characterization of dermal exposure.
    Boogaard PJ
    Hum Exp Toxicol; 2008 Apr; 27(4):297-305. PubMed ID: 18684800
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dermal uptake of solvents from the vapour phase: an experimental study in humans.
    Brooke I; Cocker J; Delic JI; Payne M; Jones K; Gregg NC; Dyne D
    Ann Occup Hyg; 1998 Nov; 42(8):531-40. PubMed ID: 9838866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dermal exposure to beryllium: a pilot case study.
    Emond C; Robin JP; Breton R; Philippe S; Zayed J
    J Toxicol Environ Health A; 2007 Mar; 70(6):529-33. PubMed ID: 17365605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of the percutaneous absorption of trichloroethylene in rats and humans using MS/MS real-time breath analysis and physiologically based pharmacokinetic modeling.
    Poet TS; Corley RA; Thrall KD; Edwards JA; Tanojo H; Weitz KK; Hui X; Maibach HI; Wester RC
    Toxicol Sci; 2000 Jul; 56(1):61-72. PubMed ID: 10869454
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methods to assess dermal exposures in occupational settings: a scoping review.
    Therkorn JH; Mathewson BA; Laursen CJ; Maberti S; Aizenberg V; Dinkelacker BT; Rege S
    Ann Work Expo Health; 2024 Apr; 68(4):351-365. PubMed ID: 38466914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Approaches for evaluating the relevance of multiroute exposures in establishing guideline values for drinking water contaminants.
    Krishnan K; Carrier R
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2008; 26(3):300-16. PubMed ID: 18781539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dermal exposure assessment in occupational epidemiologic research.
    Vermeulen R; Stewart P; Kromhout H
    Scand J Work Environ Health; 2002 Dec; 28(6):371-85. PubMed ID: 12539797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of real-time breath analysis and physiologically based pharmacokinetic modeling to evaluate dermal absorption of aqueous toluene in human volunteers.
    Thrall KD; Weitz KK; Woodstock AD
    Toxicol Sci; 2002 Aug; 68(2):280-7. PubMed ID: 12151623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A toolkit for dermal risk assessment and management: an overview.
    Oppl R; Kalberlah F; Evans PG; van Hemmen JJ
    Ann Occup Hyg; 2003 Nov; 47(8):629-40. PubMed ID: 14602671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Percutaneous absorption of inorganic lead compounds.
    Sun CC; Wong TT; Hwang YH; Chao KY; Jee SH; Wang JD
    AIHA J (Fairfax, Va); 2002; 63(5):641-6. PubMed ID: 12529920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Risk assessment of Bundeswehr (German Federal Armed Forces) permethrin-impregnated battle dress uniforms (BDU).
    Appel KE; Gundert-Remy U; Fischer H; Faulde M; Mross KG; Letzel S; Rossbach B
    Int J Hyg Environ Health; 2008 Mar; 211(1-2):88-104. PubMed ID: 18222725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The usual suspects-influence of physicochemical properties on lag time, skin deposition, and percutaneous penetration of nine model compounds.
    Bo Nielsen J; Ahm Sørensen J; Nielsen F
    J Toxicol Environ Health A; 2009; 72(5):315-23. PubMed ID: 19184747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison between in vitro rat and human and in vivo rat skin absorption studies.
    van Ravenzwaay B; Leibold E
    Hum Exp Toxicol; 2004 Aug; 23(9):421-30. PubMed ID: 15497817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A dermal model for spray painters. Part II: estimating the deposition and uptake of solvents.
    Semple S; Brouwer DH; Dick F; Cherrie JW
    Ann Occup Hyg; 2001 Jan; 45(1):25-33. PubMed ID: 11137696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Systematic Review of the Routes and Forms of Exposure to Engineered Nanomaterials.
    Basinas I; Jiménez AS; Galea KS; Tongeren MV; Hurley F
    Ann Work Expo Health; 2018 Jul; 62(6):639-662. PubMed ID: 29931230
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimation of the percutaneous absorption of permethrin in humans using the parallelogram method.
    Ross JH; Reifenrath WG; Driver JH
    J Toxicol Environ Health A; 2011; 74(6):351-63. PubMed ID: 21271436
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Malathion dermal permeability in relation to dermal load: Assessment by physiologically based pharmacokinetic modeling of in vivo human data.
    Bogen KT; Singhal A
    J Environ Sci Health B; 2017 Feb; 52(2):138-146. PubMed ID: 27820679
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological monitoring to assess dermal exposure to ethylene oxide vapours during an incidental release.
    Boogaard PJ; van Puijvelde MJ; Urbanus JH
    Toxicol Lett; 2014 Dec; 231(3):387-90. PubMed ID: 24882394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.