BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 35052498)

  • 1. Inorganic Nitrogen Transport and Assimilation in Pea (
    Gu B; Chen Y; Xie F; Murray JD; Miller AJ
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NPF and NRT2 from
    Morère-Le Paven MC; Clochard T; Limami AM
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38276779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.
    Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M
    Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum.
    Butterly CR; Armstrong R; Chen D; Tang C
    Ann Bot; 2016 Jan; 117(1):177-85. PubMed ID: 26346721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools.
    Lu MZ; Snyder R; Grant J; Tegeder M
    Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants.
    Tan Q; Zhang L; Grant J; Cooper P; Tegeder M
    Plant Physiol; 2010 Dec; 154(4):1886-96. PubMed ID: 20923886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of source-to-sink transport of methionine in establishing seed protein quantity and quality in legumes.
    Garneau MG; Lu MZ; Grant J; Tegeder M
    Plant Physiol; 2021 Dec; 187(4):2134-2155. PubMed ID: 34618032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balancing nitrate acquisition strategies in symbiotic legumes.
    Rahmat Z; Sohail MN; Perrine-Walker F; Kaiser BN
    Planta; 2023 Jun; 258(1):12. PubMed ID: 37296318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using an ecophysiological analysis to dissect genetic variability and to propose an ideotype for nitrogen nutrition in pea.
    Voisin AS; Bourion V; Duc G; Salon C
    Ann Bot; 2007 Dec; 100(7):1525-36. PubMed ID: 17921490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PsNRT2.3 interacts with PsNAR to promote high-affinity nitrate uptake in pea (Pisum sativum L.).
    Chen B; Shi Y; Lu L; Wang L; Sun Y; Ning W; Liu Z; Cheng S
    Plant Physiol Biochem; 2024 Jan; 206():108191. PubMed ID: 38016367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.
    Ivanova KA; Tsyganova AV; Brewin NJ; Tikhonovich IA; Tsyganov VE
    Protoplasma; 2015 Nov; 252(6):1505-17. PubMed ID: 25743038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term iron deficiency: Tracing changes in the proteome of different pea (Pisum sativum L.) cultivars.
    Meisrimler CN; Wienkoop S; Lyon D; Geilfus CM; Lüthje S
    J Proteomics; 2016 May; 140():13-23. PubMed ID: 27012544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization.
    Serova TA; Tikhonovich IA; Tsyganov VE
    J Plant Physiol; 2017 May; 212():29-44. PubMed ID: 28242415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of pea amino acid permease AAP6 in nodule nitrogen metabolism and export, and plant nutrition.
    Garneau MG; Tan Q; Tegeder M
    J Exp Bot; 2018 Oct; 69(21):5205-5219. PubMed ID: 30113690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability.
    Bourion V; Rizvi SM; Fournier S; de Larambergue H; Galmiche F; Marget P; Duc G; Burstin J
    Theor Appl Genet; 2010 Jun; 121(1):71-86. PubMed ID: 20180092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Identification, expression and DNA variation analysis of high affinity nitrate transporter
    Zhao S; Guo Z; Zhu L; Fan J; Yang B; Chai W; Sun H; Feng F; Liang Y; Zou C; Jiang X; Zhao W; Lü J; Zhang C
    Sheng Wu Gong Cheng Xue Bao; 2023 Jul; 39(7):2743-2761. PubMed ID: 37584129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal patterns of 13C partitioning between shoots and nodulated roots of N2- or nitrate-fed Pisum sativum L.
    Voisin AS; Salon C; Jeudy C; Warembourg FR
    Ann Bot; 2003 Apr; 91(5):539-46. PubMed ID: 12646498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism.
    Weigelt K; Küster H; Radchuk R; Müller M; Weichert H; Fait A; Fernie AR; Saalbach I; Weber H
    Plant J; 2008 Sep; 55(6):909-26. PubMed ID: 18494854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of nodule CO2 fixation for the efficiency of symbiotic nitrogen fixation in pea at vegetative growth and during pod formation.
    Fischinger SA; Schulze J
    J Exp Bot; 2010 May; 61(9):2281-91. PubMed ID: 20363863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive.
    Delgado-Alvarado A; Walker RP; Leegood RC
    Plant Cell Environ; 2007 Feb; 30(2):225-35. PubMed ID: 17238913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.