BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35053236)

  • 1. Characterization and Modification of Light-Sensitive Phosphodiesterases from Choanoflagellates.
    Tian Y; Yang S; Nagel G; Gao S
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel rhodopsin phosphodiesterase from
    Tian Y; Gao S; Yang S; Nagel G
    Biochem J; 2018 Mar; 475(6):1121-1128. PubMed ID: 29483295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and Characterization of RhoPDE, a Retinylidene/Phosphodiesterase Fusion Protein and Potential Optogenetic Tool from the Choanoflagellate Salpingoeca rosetta.
    Lamarche LB; Kumar RP; Trieu MM; Devine EL; Cohen-Abeles LE; Theobald DL; Oprian DD
    Biochemistry; 2017 Oct; 56(43):5812-5822. PubMed ID: 28976747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the mechanism of rhodopsin phosphodiesterase.
    Ikuta T; Shihoya W; Sugiura M; Yoshida K; Watari M; Tokano T; Yamashita K; Katayama K; Tsunoda SP; Uchihashi T; Kandori H; Nureki O
    Nat Commun; 2020 Nov; 11(1):5605. PubMed ID: 33154353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unique choanoflagellate enzyme rhodopsin exhibits light-dependent cyclic nucleotide phosphodiesterase activity.
    Yoshida K; Tsunoda SP; Brown LS; Kandori H
    J Biol Chem; 2017 May; 292(18):7531-7541. PubMed ID: 28302718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins.
    Tian Y; Gao S; Nagel G
    Methods Mol Biol; 2022; 2501():325-338. PubMed ID: 35857236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-regulated collective contractility in a multicellular choanoflagellate.
    Brunet T; Larson BT; Linden TA; Vermeij MJA; McDonald K; King N
    Science; 2019 Oct; 366(6463):326-334. PubMed ID: 31624206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote.
    Watari M; Ikuta T; Yamada D; Shihoya W; Yoshida K; Tsunoda SP; Nureki O; Kandori H
    J Biol Chem; 2019 Mar; 294(10):3432-3443. PubMed ID: 30622140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
    Tsunoda SP; Sugiura M; Kandori H
    Adv Exp Med Biol; 2021; 1293():153-165. PubMed ID: 33398812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances, Perspectives and Potential Engineering Strategies of Light-Gated Phosphodiesterases for Optogenetic Applications.
    Tian Y; Yang S; Gao S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.
    Gao S; Nagpal J; Schneider MW; Kozjak-Pavlovic V; Nagel G; Gottschalk A
    Nat Commun; 2015 Sep; 6():8046. PubMed ID: 26345128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.
    Ryu MH; Fomicheva A; Moskvin OV; Gomelsky M
    J Bacteriol; 2017 Sep; 199(18):. PubMed ID: 28320886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the tandem GAF domain of human phosphodiesterase 5 using a cyanobacterial adenylyl cyclase as a reporter enzyme.
    Bruder S; Schultz A; Schultz JE
    J Biol Chem; 2006 Jul; 281(29):19969-76. PubMed ID: 16690614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools.
    Tanwar M; Sharma K; Moar P; Kateriya S
    Appl Biochem Biotechnol; 2018 Aug; 185(4):1014-1028. PubMed ID: 29404907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of PDE10 and PDE11 phosphodiesterases.
    Jäger R; Russwurm C; Schwede F; Genieser HG; Koesling D; Russwurm M
    J Biol Chem; 2012 Jan; 287(2):1210-9. PubMed ID: 22105073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inner mechanics of rhodopsin guanylyl cyclase during cGMP-formation revealed by real-time FTIR spectroscopy.
    Fischer P; Mukherjee S; Schiewer E; Broser M; Bartl F; Hegemann P
    Elife; 2021 Oct; 10():. PubMed ID: 34665128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide.
    Bellamy TC; Garthwaite J
    Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases.
    Tian Y; Gao S; von der Heyde EL; Hallmann A; Nagel G
    BMC Biol; 2018 Dec; 16(1):144. PubMed ID: 30522480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fluorometric Activity Assay for Light-Regulated Cyclic-Nucleotide-Monophosphate Actuators.
    Schumacher CH; Körschen HG; Nicol C; Gasser C; Seifert R; Schwärzel M; Möglich A
    Methods Mol Biol; 2016; 1408():93-105. PubMed ID: 26965118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and Genetic Activation of Cyclic Di-GMP-Specific Phosphodiesterases in Escherichia coli.
    Reinders A; Hee CS; Ozaki S; Mazur A; Boehm A; Schirmer T; Jenal U
    J Bacteriol; 2016 Feb; 198(3):448-62. PubMed ID: 26553851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.