BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 35053246)

  • 41. Six New Pentacyclic Triterpenoids from the Fruit of Camptotheca acuminata.
    Li GQ; Chen NH; Zhang YB; Li P; Huang XJ; Jiang RW; Wang GC; Li YL
    Chem Biodivers; 2017 Jan; 14(1):. PubMed ID: 27584719
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and Activity of Pentacyclic Triterpenes Codrugs. A Review.
    Żwawiak J; Pawełczyk A; Olender D; Zaprutko L
    Mini Rev Med Chem; 2021; 21(12):1509-1526. PubMed ID: 33402080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata.
    Raja AF; Ali F; Khan IA; Shawl AS; Arora DS; Shah BA; Taneja SC
    BMC Microbiol; 2011 Mar; 11():54. PubMed ID: 21406118
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Asiatic Acid, Extracted from
    Liu YT; Chuang YC; Lo YS; Lin CC; Hsi YT; Hsieh MJ; Chen MK
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31991751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cyclic topology enhances the killing activity of polycations against planktonic and biofilm bacteria.
    Wu B; You W; Wang HL; Zhang Z; Nie X; Wang F; You YZ
    J Mater Chem B; 2022 Jun; 10(25):4823-4831. PubMed ID: 35266490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial and physical characteristics of orthodontic primers containing antimicrobial agents.
    Chung SH; Cho S; Kim K; Lim BS; Ahn SJ
    Angle Orthod; 2017 Mar; 87(2):307-312. PubMed ID: 27598781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii.
    Usmani Y; Ahmed A; Faizi S; Versiani MA; Shamshad S; Khan S; Simjee SU
    Microb Pathog; 2021 Aug; 157():104997. PubMed ID: 34048890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy.
    Laszczyk MN
    Planta Med; 2009 Dec; 75(15):1549-60. PubMed ID: 19742422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Killing of Serratia marcescens biofilms with chloramphenicol.
    Ray C; Shenoy AT; Orihuela CJ; González-Juarbe N
    Ann Clin Microbiol Antimicrob; 2017 Mar; 16(1):19. PubMed ID: 28356113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gypsogenin Battling for a Front Position in the Pentacyclic Triterpenes
    Radwan MO; Abd-Alla HI; Alsaggaf AT; El-Mezayen H; Abourehab MAS; El-Beeh ME; Tateishi H; Otsuka M; Fujita M
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antibacterial Activity of Endodontic Sealers against Planktonic Bacteria and Bacteria in Biofilms.
    Kapralos V; Koutroulis A; Ørstavik D; Sunde PT; Rukke HV
    J Endod; 2018 Jan; 44(1):149-154. PubMed ID: 29153733
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural and Semisynthetic Pentacyclic Triterpenes for Chronic Myeloid Leukemia Therapy: Reality, Challenges and Perspectives.
    Barreto Vianna DR; Gotardi J; Baggio Gnoatto SC; Pilger DA
    ChemMedChem; 2021 Jun; 16(12):1835-1860. PubMed ID: 33682360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016).
    Hussain H; Green IR; Ali I; Khan IA; Ali Z; Al-Sadi AM; Ahmed I
    Expert Opin Ther Pat; 2017 Sep; 27(9):1061-1072. PubMed ID: 28637397
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding Site.
    Kamble SM; Patel HM; Goyal SN; Noolvi MN; Mahajan UB; Ojha S; Patil CR
    Comb Chem High Throughput Screen; 2017; 20(3):215-234. PubMed ID: 28024463
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comprehensive and comparative study on the action of pentacyclic triterpenoids on Vibrio cholerae biofilms.
    Bhattacharya SP; Bhattacharya A; Sen A
    Microb Pathog; 2020 Dec; 149():104493. PubMed ID: 32916241
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microbial transformation of pentacyclic triterpenes for anti-inflammatory agents on the HMGB1 stimulated RAW 264.7 cells by Streptomyces olivaceus CICC 23628.
    Zhu Y; Shen P; Wang J; Jiang X; Wang W; Raj R; Ge H; Wang W; Yu B; Zhang J
    Bioorg Med Chem; 2021 Dec; 52():116494. PubMed ID: 34800877
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advances in production and structural derivatization of the promising molecule ursolic acid.
    Liu HR; Ahmad N; Lv B; Li C
    Biotechnol J; 2021 Nov; 16(11):e2000657. PubMed ID: 34096160
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro antibacterial activity of ceftazidime/avibactam in combination against planktonic and biofilm carbapenemase-producing Klebsiella pneumoniae isolated from blood.
    Papalini C; Sabbatini S; Monari C; Mencacci A; Francisci D; Perito S; Pasticci MB
    J Glob Antimicrob Resist; 2020 Dec; 23():4-8. PubMed ID: 32810638
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibition of ultraviolet-A-modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human keratinocytes.
    Soo Lee Y; Jin DQ; Beak SM; Lee ES; Kim JA
    Eur J Pharmacol; 2003 Aug; 476(3):173-8. PubMed ID: 12969763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite.
    Vetas D; Dimitropoulou E; Mitropoulou G; Kourkoutas Y; Giaouris E
    Int J Food Microbiol; 2017 Sep; 257():19-25. PubMed ID: 28633052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.