These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 3505333)

  • 21. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate.
    Swezey RR; Epel D
    Dev Biol; 1995 Jun; 169(2):733-44. PubMed ID: 7781912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The modulation of the oxidative phase of the pentose phosphate pathway in mouse liver.
    Velasco P; Sieiro AM; Ibarguren I; Ramos-Martínez JI; Barcia R
    Int J Biochem Cell Biol; 1995 Oct; 27(10):1015-9. PubMed ID: 7496990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultraviolet light-induced changes in the glucose-6-phosphate dehydrogenase activity of porcine corneas.
    Tsubai T; Matsuo M
    Cornea; 2002 Jul; 21(5):495-500. PubMed ID: 12072725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae.
    Nguyen TT; Kitajima S; Izawa S
    J Biosci Bioeng; 2014 Sep; 118(3):263-9. PubMed ID: 24725964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative nd non-oxidative reactions and related enzymes of the cycle in adipose tissue.
    Gumaa KA; Novello F; McLean P
    Biochem J; 1969 Sep; 114(2):253-64. PubMed ID: 5810081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucose metabolism in human gliomas: correspondence of in situ and in vitro metabolic rates and altered energy metabolism.
    Galarraga J; Loreck DJ; Graham JF; DeLaPaz RL; Smith BH; Hallgren D; Cummins CJ
    Metab Brain Dis; 1986 Dec; 1(4):279-91. PubMed ID: 3508247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the pentose phosphate cycle in bass (Dicentrarchus labrax L.) liver.
    Medina-Puerta MM; Gallego-Iniesta M; Garrido-Pertierra A
    Rev Esp Fisiol; 1988 Dec; 44(4):433-9. PubMed ID: 3244891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research progress in glucose-6-phosphate dehydrogenase in higher plants].
    Yu D; Tang H; Zhang Y; Luo Y; Liu Z
    Sheng Wu Gong Cheng Xue Bao; 2012 Jul; 28(7):800-12. PubMed ID: 23167192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe.
    Tsai CS; Chen Q
    Biochem Cell Biol; 1998; 76(1):107-13. PubMed ID: 9666312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes.
    Rush GF; Alberts D
    Toxicol Appl Pharmacol; 1986 Sep; 85(3):324-31. PubMed ID: 2945286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications of differential peroxyl radical-induced inactivation of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase for the pentose phosphate pathway.
    Reyes JS; Fuentes-Lemus E; Figueroa JD; Rojas J; Fierro A; Arenas F; Hägglund PM; Davies MJ; López-Alarcón C
    Sci Rep; 2022 Dec; 12(1):21191. PubMed ID: 36476946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress.
    Christodoulou D; Link H; Fuhrer T; Kochanowski K; Gerosa L; Sauer U
    Cell Syst; 2018 May; 6(5):569-578.e7. PubMed ID: 29753645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes.
    Antonenkov VD
    Eur J Biochem; 1989 Jul; 183(1):75-82. PubMed ID: 2753047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm.
    Williams AC; Ford WC
    Biol Reprod; 2004 Oct; 71(4):1309-16. PubMed ID: 15189835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The enhancement of glucose uptake caused by the collapse of gap junction communication is due to an increase in astrocyte proliferation.
    Tabernero A; Jiménez C; Velasco A; Giaume C; Medina JM
    J Neurochem; 2001 Aug; 78(4):890-8. PubMed ID: 11520909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diminished pentose cycle flux in perfused livers of ethanol-fed rats.
    Reinke LA; Tupper JS; Smith PR; Sweeny DJ
    Mol Pharmacol; 1987 Jun; 31(6):631-7. PubMed ID: 3600608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.