These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 35053398)

  • 1. Cyclin-Dependent Kinases and CTD Phosphatases in Cell Cycle Transcriptional Control: Conservation across Eukaryotic Kingdoms and Uniqueness to Plants.
    Zheng ZL
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs.
    Guo Z; Stiller JW
    BMC Genomics; 2004 Sep; 5():69. PubMed ID: 15380029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells.
    Mészáros T; Miskolczi P; Ayaydin F; Pettkó-Szandtner A; Peres A; Magyar Z; Horváth GV; Bakó L; Fehér A; Dudits D
    Plant Mol Biol; 2000 Aug; 43(5-6):595-605. PubMed ID: 11089863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.
    Singh AK; Rastogi S; Shukla H; Asalam M; Rath SK; Akhtar MS
    J Biol Chem; 2017 Mar; 292(13):5507-5518. PubMed ID: 28202544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pause, play, repeat: CDKs push RNAP II's buttons.
    Sansó M; Fisher RP
    Transcription; 2013; 4(4):146-52. PubMed ID: 23756342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the Pol II CTD Phosphorylation Code by Rac1 and Cdc42 Small GTPases in Cultured Human Cancer Cells and Its Implication for Developing a Synthetic-Lethal Cancer Therapy.
    Zhang B; Zhong X; Sauane M; Zhao Y; Zheng ZL
    Cells; 2020 Mar; 9(3):. PubMed ID: 32143485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the CDK-dependent transcription cycle in fission yeast.
    Sansó M; Fisher RP
    Biochem Soc Trans; 2013 Dec; 41(6):1660-5. PubMed ID: 24256271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.
    Chymkowitch P; Enserink JM
    Transcription; 2013; 4(1):3-6. PubMed ID: 23131667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates.
    Suryadinata R; Sadowski M; Sarcevic B
    Biosci Rep; 2010 Mar; 30(4):243-55. PubMed ID: 20337599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II.
    Hajheidari M; Farrona S; Huettel B; Koncz Z; Koncz C
    Plant Cell; 2012 Apr; 24(4):1626-42. PubMed ID: 22547781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.
    Majello B; Napolitano G
    Front Biosci; 2001 Oct; 6():D1358-68. PubMed ID: 11578967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transcriptional autoregulatory loop for KIN28-CCL1 and SRB10-SRB11, each encoding RNA polymerase II CTD kinase-cyclin pair, stimulates the meiotic development of S. cerevisiae.
    Ohkuni K; Yamashita I
    Yeast; 2000 Jun; 16(9):829-46. PubMed ID: 10861906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.
    Bataille AR; Jeronimo C; Jacques PÉ; Laramée L; Fortin MÈ; Forest A; Bergeron M; Hanes SD; Robert F
    Mol Cell; 2012 Jan; 45(2):158-70. PubMed ID: 22284676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited.
    Zheng ZL
    Transcription; 2017 Aug; 8(4):268-274. PubMed ID: 28548879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints.
    Hernansaiz-Ballesteros RD; Földi C; Cardelli L; Nagy LG; Csikász-Nagy A
    Sci Rep; 2021 May; 11(1):11122. PubMed ID: 34045495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors controlling cyclin B expression.
    Ito M
    Plant Mol Biol; 2000 Aug; 43(5-6):677-90. PubMed ID: 11089869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural determinants for accurate dephosphorylation of RNA polymerase II by its cognate C-terminal domain (CTD) phosphatase during eukaryotic transcription.
    Irani S; Sipe SN; Yang W; Burkholder NT; Lin B; Sim K; Matthews WL; Brodbelt JS; Zhang Y
    J Biol Chem; 2019 May; 294(21):8592-8605. PubMed ID: 30971428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant cell cycle transitions.
    De Veylder L; Joubès J; Inzé D
    Curr Opin Plant Biol; 2003 Dec; 6(6):536-43. PubMed ID: 14611951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.