These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 3505365)
21. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Alm H; Torner H; Löhrke B; Viergutz T; Ghoneim IM; Kanitz W Theriogenology; 2005 May; 63(8):2194-205. PubMed ID: 15826683 [TBL] [Abstract][Full Text] [Related]
22. Brn-4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Zhang X; Jin G; Wang L; Hu W; Tian M; Qin J; Huang H Hippocampus; 2009 Feb; 19(2):176-86. PubMed ID: 18831054 [TBL] [Abstract][Full Text] [Related]
23. Synaptic 5'-nucleotidase activity reflects lesion-induced sprouting within the adult rat dentate gyrus. Schoen SW; Kreutzberg GW Exp Neurol; 1994 May; 127(1):106-18. PubMed ID: 8200429 [TBL] [Abstract][Full Text] [Related]
24. Role of dCA3 efferents via the fimbria in the acquisition of a delay nonmatch to place task. Hunsaker MR; Allan KD; Kesner RP Hippocampus; 2007; 17(6):494-502. PubMed ID: 17455333 [TBL] [Abstract][Full Text] [Related]
25. Deafferentation removes calretinin immunopositive terminals, but does not induce degeneration of calbindin D-28k and parvalbumin expressing neurons in the hippocampus of adult rats. Beck KD; Hefti F; Widmer HR J Neurosci Res; 1994 Oct; 39(3):298-304. PubMed ID: 7869422 [TBL] [Abstract][Full Text] [Related]
26. The role of NGF and afferent denervation in the process of sympathetic fiber ingrowth into the hippocampal formation. Scalapino K; Conner JM; Varon S Exp Neurol; 1996 Oct; 141(2):310-7. PubMed ID: 8812166 [TBL] [Abstract][Full Text] [Related]
27. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents. Peterson GM Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108 [TBL] [Abstract][Full Text] [Related]
28. A comparison of the effects of fimbria-fornix, hippocampal, or entorhinal cortex lesions on spatial reference and working memory in rats: short versus long postsurgical recovery period. Galani R; Obis S; Coutureau E; Jarrard L; Cassel JC Neurobiol Learn Mem; 2002 Jan; 77(1):1-16. PubMed ID: 11749082 [TBL] [Abstract][Full Text] [Related]
29. Inhibition of axoplasmic transport in the developing visual system of the rat: IV. Quantitative Golgi, electron microscopic, and histochemical analyses of the maturation of the visual cortex. Matthews MA; Riccio RV Am J Anat; 1984 Sep; 171(1):107-31. PubMed ID: 6207722 [TBL] [Abstract][Full Text] [Related]
30. Glucose-6-phosphate dehydrogenase activity in individual rat hepatocytes of different ploidy classes. I. Developments during postnatal growth. Van Noorden CJ; Vogels IM; Houtkooper JM; Fronik G; Tas J; James J Eur J Cell Biol; 1984 Jan; 33(1):157-62. PubMed ID: 6698038 [TBL] [Abstract][Full Text] [Related]
31. Hippocampal deafferentation and deefferentation and gastric pathology in rats. Henke PG; Savoie RJ; Callahan BM Brain Res Bull; 1981 Oct; 7(4):395-8. PubMed ID: 7296310 [TBL] [Abstract][Full Text] [Related]
32. Time course of mossy fiber sprouting following bilateral transection of the fimbria/fornix. Hannesson DK; Armitage LL; Mohapel P; Corcoran ME Neuroreport; 1997 Jul; 8(9-10):2299-303. PubMed ID: 9243629 [TBL] [Abstract][Full Text] [Related]
33. The expression of a fucosyl-ganglioside in the molecular layer of the dentate gyrus following entorhinal cortical lesions. Suchy SF; Schwarting GA; Lethco BA; Ramirez JJ Neurosci Lett; 1991 Sep; 131(1):105-8. PubMed ID: 1791967 [TBL] [Abstract][Full Text] [Related]
34. Behavioural recovery from unilateral vestibular lesion is facilitated by GM1 ganglioside treatment. Petrosini L Behav Brain Res; 1987 Feb; 23(2):117-26. PubMed ID: 3566906 [TBL] [Abstract][Full Text] [Related]
35. Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation. Gage FH; Björklund A; Stenevi U; Dunnett SB Brain Res; 1983 May; 268(1):39-47. PubMed ID: 6860965 [TBL] [Abstract][Full Text] [Related]
36. Lesioning and recovery of the serotoninergic hippocampal afferents: differential effects of GM1 ganglioside. Lombardi G; Beni M; Consolazione A; Moroni F Neuropharmacology; 1988 Nov; 27(11):1085-8. PubMed ID: 2462696 [TBL] [Abstract][Full Text] [Related]
37. The dynamic expression of Mash1 in the hippocampal subgranular zone after fimbria-fornix transection. Dong C; Zhao H; Chen W; Wang L; Zhang L; Zhang X; Shi J; Li H; Jin G Neurosci Lett; 2012 Jun; 520(1):26-31. PubMed ID: 22583763 [TBL] [Abstract][Full Text] [Related]
38. Evidence for a frontocortical-septal glutamatergic pathway and compensatory changes in septal glutamate uptake after cortical and fornix lesions in the rat. Jaskiw GE; Tizabi Y; Lipska BK; Kolachana BS; Wyatt RJ; Gilad GM Brain Res; 1991 May; 550(1):7-10. PubMed ID: 1889003 [TBL] [Abstract][Full Text] [Related]
39. Differential distributions of oxidative enzymes within subnuclei of the interpeduncular nucleus in rats. Fass B; Hamill GS Brain Res Bull; 1988 Mar; 20(3):277-81. PubMed ID: 3365561 [TBL] [Abstract][Full Text] [Related]
40. Changes in glucose 6-phosphate dehydrogenase activity in developing embryonic chick skeletal muscle and spinal cord. Lyles JM; Weill CL Dev Neurosci; 1986; 8(1):44-52. PubMed ID: 3743468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]