BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35053901)

  • 1. Conversion of Food Waste into 2,3-Butanediol via Thermophilic Fermentation: Effects of Carbohydrate Content and Nutrient Supplementation.
    Yu D; O'Hair J; Poe N; Jin Q; Pinton S; He Y; Huang H
    Foods; 2022 Jan; 11(2):. PubMed ID: 35053901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production.
    OHair J; Jin Q; Yu D; Wu J; Wang H; Zhou S; Huang H
    Waste Manag; 2021 Feb; 120():248-256. PubMed ID: 33310601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation.
    Caldwell A; Su X; Jin Q; Hemphill P; Jaha D; Nard S; Tiriveedhi V; Huang H; OHair J
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation.
    Lobeda K; Jin Q; Wu J; Zhang W; Huang H
    J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,3-Butanediol production using soy-based nitrogen source and fermentation process evaluation by a novel isolate of
    Das A; Prakash G; Lali AM
    Prep Biochem Biotechnol; 2021; 51(10):1046-1055. PubMed ID: 33719922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative production of 2,3-Butanediol using bread waste - A green approach for sustainable management of food waste.
    Narisetty V; Zhang L; Zhang J; Sze Ki Lin C; Wah Tong Y; Loke Show P; Kant Bhatia S; Misra A; Kumar V
    Bioresour Technol; 2022 Aug; 358():127381. PubMed ID: 35644452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis.
    Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol.
    Song CW; Chelladurai R; Park JM; Song H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):97-108. PubMed ID: 31758412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and Evaluation of
    Song CW; Rathnasingh C; Park JM; Lee J; Song H
    J Microbiol Biotechnol; 2018 Mar; 28(3):409-417. PubMed ID: 29212290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Limiting acetoin generation during 2,3-butanediol fermentation with Paenibacillus polymyxa using lignocellulosic hydrolysates.
    Stoklosa RJ; García-Negrón V; Latona RJ; Toht M
    Bioresour Technol; 2024 Feb; 393():130053. PubMed ID: 37993069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volumetric oxygen transfer coefficient as fermentation control parameter to manipulate the production of either acetoin or D-2,3-butanediol using bakery waste.
    Maina S; Schneider R; Alexandri M; Papapostolou H; Nychas GJ; Koutinas A; Venus J
    Bioresour Technol; 2021 Sep; 335():125155. PubMed ID: 34015563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.
    Lian J; Chao R; Zhao H
    Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole sugar 2,3-butanediol fermentation for oil palm empty fruit bunches biorefinery by a newly isolated Klebsiella pneumoniae PM2.
    Rehman S; Khairul Islam M; Khalid Khanzada N; Kyoungjin An A; Chaiprapat S; Leu SY
    Bioresour Technol; 2021 Aug; 333():125206. PubMed ID: 33940505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient production of (R,R)-2,3-butanediol from cellulosic hydrolysate using Paenibacillus polymyxa ICGEB2008.
    Adlakha N; Yazdani SS
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):21-8. PubMed ID: 25424694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carrot Discard as a Promising Feedstock to Produce 2,3-Butanediol by Fermentation with
    López-Linares JC; Mateo Martínez A; Coca M; Lucas S; García-Cubero MT
    Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution.
    Huang H; Singh V; Qureshi N
    Biotechnol Biofuels; 2015; 8():147. PubMed ID: 26380581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1.
    Cho S; Kim T; Woo HM; Kim Y; Lee J; Um Y
    Biotechnol Biofuels; 2015; 8():146. PubMed ID: 26379778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH and fermentation strategies on 2,3-butanediol production with an isolated Klebsiella sp. Zmd30 strain.
    Wong CL; Yen HW; Lin CL; Chang JS
    Bioresour Technol; 2014; 152():169-76. PubMed ID: 24291317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production.
    Lee JW; Lee YG; Jin YS; Rao CV
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5751-5767. PubMed ID: 34287658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.