These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35054297)

  • 1. Deep-Learning Segmentation of Epicardial Adipose Tissue Using Four-Chamber Cardiac Magnetic Resonance Imaging.
    Daudé P; Ancel P; Confort Gouny S; Jacquier A; Kober F; Dutour A; Bernard M; Gaborit B; Rapacchi S
    Diagnostics (Basel); 2022 Jan; 12(1):. PubMed ID: 35054297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network.
    Arai H; Kawakubo M; Sanui K; Iwamoto R; Nishimura H; Kadokami T
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation and volume quantification of epicardial adipose tissue in computed tomography images.
    Li Y; Song S; Sun Y; Bao N; Yang B; Xu L
    Med Phys; 2022 Oct; 49(10):6477-6490. PubMed ID: 36047382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network.
    Penso M; Moccia S; Scafuri S; Muscogiuri G; Pontone G; Pepi M; Caiani EG
    Comput Methods Programs Biomed; 2021 Jun; 204():106059. PubMed ID: 33812305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic myocardial segmentation in dynamic contrast enhanced perfusion MRI using Monte Carlo dropout in an encoder-decoder convolutional neural network.
    Kim YC; Kim KR; Choe YH
    Comput Methods Programs Biomed; 2020 Mar; 185():105150. PubMed ID: 31671341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of age and sex on fully automated deep learning assessment of left ventricular function, volumes, and contours in cardiac magnetic resonance imaging.
    Chen V; Barker AJ; Golan R; Scott MB; Huh H; Wei Q; Sojoudi A; Markl M
    Int J Cardiovasc Imaging; 2021 Dec; 37(12):3539-3547. PubMed ID: 34185211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography.
    He X; Guo BJ; Lei Y; Wang T; Fu Y; Curran WJ; Zhang LJ; Liu T; Yang X
    Phys Med Biol; 2020 May; 65(9):095012. PubMed ID: 32182595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net.
    Hu Y; Jiang S; Yu X; Huang S; Lan Z; Yu Y; Zhang X; Chen J; Zhang J
    Quant Imaging Med Surg; 2023 Oct; 13(10):6482-6492. PubMed ID: 37869313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
    Zhao Y; Tang C; Cui B; Somasundaram A; Raspe J; Hu X; Holzapfel C; Junker D; Hauner H; Menze B; Wu M; Karampinos D
    Quant Imaging Med Surg; 2023 Jul; 13(7):4699-4715. PubMed ID: 37456284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional Neural Network in the UK Biobank.
    Bard A; Raisi-Estabragh Z; Ardissino M; Lee AM; Pugliese F; Dey D; Sarkar S; Munroe PB; Neubauer S; Harvey NC; Petersen SE
    Front Cardiovasc Med; 2021; 8():677574. PubMed ID: 34307493
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework.
    Abdulkareem M; Brahier MS; Zou F; Rauseo E; Uchegbu I; Taylor A; Thomaides A; Bergquist PJ; Srichai MB; Lee AM; Vargas JD; Petersen SE
    Rev Cardiovasc Med; 2022 Dec; 23(12):412. PubMed ID: 39076659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic quantification of epicardial adipose tissue volume.
    Li X; Sun Y; Xu L; Greenwald SE; Zhang L; Zhang R; You H; Yang B
    Med Phys; 2021 Aug; 48(8):4279-4290. PubMed ID: 34062000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of biventricular contours in tissue phase mapping using deep learning.
    Shen D; Pathrose A; Sarnari R; Blake A; Berhane H; Baraboo JJ; Carr JC; Markl M; Kim D
    NMR Biomed; 2021 Dec; 34(12):e4606. PubMed ID: 34476863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI.
    Le Berre A; Kamagata K; Otsuka Y; Andica C; Hatano T; Saccenti L; Ogawa T; Takeshige-Amano H; Wada A; Suzuki M; Hagiwara A; Irie R; Hori M; Oyama G; Shimo Y; Umemura A; Hattori N; Aoki S
    Neuroradiology; 2019 Dec; 61(12):1387-1395. PubMed ID: 31401723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Deep Learning Segmentation and Quantification of Epicardial Adipose Tissue in Non-Contrast Cardiac CT scans.
    Hoori A; Hu T; Al-Kindi S; Rajagopalan S; Wilson DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3938-3942. PubMed ID: 34892093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI.
    Langner T; Hedström A; Mörwald K; Weghuber D; Forslund A; Bergsten P; Ahlström H; Kullberg J
    Magn Reson Med; 2019 Apr; 81(4):2736-2745. PubMed ID: 30311704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.