These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35054543)

  • 1. Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular Simulations on a Bespoke Compute Fabric.
    Shillcock JC; Thomas DB; Beaumont JR; Bragg GM; Vousden ML; Brown AD
    Membranes (Basel); 2021 Dec; 12(1):. PubMed ID: 35054543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate.
    Shillcock JC; Thomas DB; Ipsen JH; Brown AD
    Biology (Basel); 2023 Jan; 12(2):. PubMed ID: 36829460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation.
    Mammen Regy R; Zheng W; Mittal J
    Methods Enzymol; 2021; 646():1-17. PubMed ID: 33453922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-Dependent Conformational Transitions of Disordered Proteins During Condensation.
    Wang J; Devarajan DS; Kim YC; Nikoubashman A; Mittal J
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane curvature sensing by model biomolecular condensates.
    Anila MM; Ghosh R; Różycki B
    Soft Matter; 2023 May; 19(20):3723-3732. PubMed ID: 37190858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation?
    Borcherds W; Bremer A; Borgia MB; Mittag T
    Curr Opin Struct Biol; 2021 Apr; 67():41-50. PubMed ID: 33069007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules.
    Shillcock JC; Lagisquet C; Alexandre J; Vuillon L; Ipsen JH
    Soft Matter; 2022 Sep; 18(35):6674-6693. PubMed ID: 36004748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins.
    Zeng X; Holehouse AS; Chilkoti A; Mittag T; Pappu RV
    Biophys J; 2020 Jul; 119(2):402-418. PubMed ID: 32619404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical studies of phase separation integrating experimental and computational methods.
    Fawzi NL; Parekh SH; Mittal J
    Curr Opin Struct Biol; 2021 Oct; 70():78-86. PubMed ID: 34144468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase behaviour and structure of a model biomolecular condensate.
    Shillcock JC; Brochut M; Chénais E; Ipsen JH
    Soft Matter; 2020 Jul; 16(27):6413-6423. PubMed ID: 32584357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding the physical principles of two-component biomolecular phase separation.
    Zhang Y; Xu B; Weiner BG; Meir Y; Wingreen NS
    Elife; 2021 Mar; 10():. PubMed ID: 33704061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning membrane phase separation using nonlipid amphiphiles.
    Muddana HS; Chiang HH; Butler PJ
    Biophys J; 2012 Feb; 102(3):489-97. PubMed ID: 22325271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions.
    Garaizar A; Espinosa JR
    J Chem Phys; 2021 Sep; 155(12):125103. PubMed ID: 34598583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coacervation-Induced Remodeling of Nanovesicles.
    Mondal S; Cui Q
    J Phys Chem Lett; 2023 May; 14(19):4532-4540. PubMed ID: 37159305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-grained MD simulations reveal beta-amyloid fibrils of various sizes bind to interfacial liquid-ordered and liquid-disordered regions in phase separated lipid rafts with diverse membrane-bound conformational states.
    Cheng SY; Cao Y; Rouzbehani M; Cheng KH
    Biophys Chem; 2020 May; 260():106355. PubMed ID: 32179374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling compartmentalization by non-membrane-bound organelles.
    Wheeler RJ; Hyman AA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.