These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35054598)
1. Thermodynamic Modeling and Performance Analysis of Vehicular High-Temperature Proton Exchange Membrane Fuel Cell System. Li Y; Li D; Ma Z; Zheng M; Lu Z Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054598 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic Modeling and Exergy Analysis of A Combined High-Temperature Proton Exchange Membrane Fuel Cell and ORC System for Automotive Applications. Li Y; Yang M; Ma Z; Zheng M; Song H; Guo X Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555454 [TBL] [Abstract][Full Text] [Related]
3. Performance Analysis Based on Sustainability Exergy Indicators of High-Temperature Proton Exchange Membrane Fuel Cell. Guo X; Xu B; Ma Z; Li Y; Li D Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077509 [TBL] [Abstract][Full Text] [Related]
4. Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells. Li D; Ma Z; Shao W; Li Y; Guo X Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012422 [TBL] [Abstract][Full Text] [Related]
5. Performance Analysis of a HT-PEMFC System with 6FPBI Membranes Doped with Cross-Linkable Polymeric Ionic Liquid. Li Y; Shao W; Ma Z; Zheng M; Song H Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077019 [TBL] [Abstract][Full Text] [Related]
6. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle Swarm Optimization Algorithm. Li Y; Ma Z; Zheng M; Li D; Lu Z; Xu B Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564508 [TBL] [Abstract][Full Text] [Related]
7. Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell. Li D; Li Y; Ma Z; Zheng M; Lu Z Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054596 [TBL] [Abstract][Full Text] [Related]
8. Performance evaluation and economic analysis of integrated solid oxide electrolyzer cell and proton exchange membrane fuel cell for power generation. Abdollahipour A; Sayyaadi H Heliyon; 2024 Jul; 10(14):e34631. PubMed ID: 39113979 [TBL] [Abstract][Full Text] [Related]
9. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Lee CY; Weng FB; Kuo YW; Tsai CH; Cheng YT; Cheng CK; Lin JT Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763559 [TBL] [Abstract][Full Text] [Related]
10. Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Zeis R Beilstein J Nanotechnol; 2015; 6():68-83. PubMed ID: 25671153 [TBL] [Abstract][Full Text] [Related]
11. Energy, Exergetic, and Thermoeconomic Analyses of Hydrogen-Fueled 1-kW Proton-Exchange Membrane Fuel Cell. Yoo Y; Lee SY; Seo SH; Oh SD; Kwak HY Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056929 [TBL] [Abstract][Full Text] [Related]
12. Flexible Five-in-One Microsensor for Real-Time Wireless Microscopic Diagnosis inside Electric Motorcycle Fuel Cell Stack Range Extender. Lee CY; Chen CH; Lee TJ; Cheong JS; Liu YC; Chen YC Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494440 [TBL] [Abstract][Full Text] [Related]
13. Ionomeric Binders for High Temperature Proton Exchange Membrane Fuel Cells. Xing R; Yu Y; Li N; Geng K; Tang H Chemistry; 2024 Dec; 30(70):e202401934. PubMed ID: 39251396 [TBL] [Abstract][Full Text] [Related]
14. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Monitoring of HT-PEMFC. Lee CY; Weng FB; Yang CY; Chiu CW; Nawale SM Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054620 [TBL] [Abstract][Full Text] [Related]
16. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport. Lee S; Nam KH; Seo K; Kim G; Han H Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32707660 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic Analysis of a Solid Oxide Fuel Cell Based Combined Cooling, Heating, and Power System Integrated with Biomass Gasification. Cui Z; Wang J; Lior N Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441169 [TBL] [Abstract][Full Text] [Related]
18. Modifying the Catalyst Layer Using Polyvinyl Alcohol for the Performance Improvement of Proton Exchange Membrane Fuel Cells under Low Humidity Operations. Jienkulsawad P; Chen YS; Arpornwichanop A Polymers (Basel); 2020 Aug; 12(9):. PubMed ID: 32825148 [TBL] [Abstract][Full Text] [Related]
19. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related]
20. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Haider R; Wen Y; Ma ZF; Wilkinson DP; Zhang L; Yuan X; Song S; Zhang J Chem Soc Rev; 2021 Jan; 50(2):1138-1187. PubMed ID: 33245736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]