These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35054715)

  • 1. Anisotropic Composition and Mechanical Behavior of a Natural Thin-Walled Composite: Eagle Feather Shaft.
    Cai S; Han B; Xu Y; Guo E; Sun B; Zeng Y; Hou H; Wu S
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seagull feather shaft: Correlation between structure and mechanical response.
    Wang B; Meyers MA
    Acta Biomater; 2017 Jan; 48():270-288. PubMed ID: 27818305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo.
    Chen G; Luo H; Yang H; Zhang T; Li S
    Acta Biomater; 2018 Jan; 65():203-215. PubMed ID: 28987785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopy on the wing: Investigating possible differences in protein secondary structures in feather shafts of birds using Raman spectroscopy.
    Laurent CM; Dyke JM; Cook RB; Dyke G; de Kat R
    J Struct Biol; 2020 Jul; 211(1):107529. PubMed ID: 32416130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopy imaging and modeling study on the mechanical properties of the primary flight feather shaft of the bean goose, Anser fabalis.
    Liu C; Xu L; Li X; Liu Y; Qi Y; Sun J; Zou M
    Microsc Res Tech; 2022 Jul; 85(7):2446-2454. PubMed ID: 35274785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo strains in pigeon flight feather shafts: implications for structural design.
    Corning WR; Biewener AA
    J Exp Biol; 1998 Nov; 201 (Pt 22)():3057-65. PubMed ID: 9787125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of the mechanical and structural properties of cortical rachis keratin of rectrices of the Toco Toucan (Ramphastos toco).
    Bodde SG; Meyers MA; McKittrick J
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):723-32. PubMed ID: 21565720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather.
    Liang Y; Liu C; Zhao Q; Lin Z; Han Z; Ren L
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates.
    Wang B; Sullivan TN
    J Mech Behav Biomed Mater; 2017 Dec; 76():4-20. PubMed ID: 28522235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure of flight feathers under uniaxial compression.
    Schelestow K; Troncoso OP; Torres FG
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():923-931. PubMed ID: 28576068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and compression resistance of bean goose (Anser fabalis) feather shaft.
    Zou M; Xu L; Zhou J; Song J; Liu S; Li X
    Microsc Res Tech; 2020 Feb; 83(2):156-164. PubMed ID: 31659818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square.
    Wang B; Meyers MA
    Adv Sci (Weinh); 2017 Mar; 4(3):1600360. PubMed ID: 28331789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the structural features and geometric parameters affecting the axial mechanical properties of the primary feather rachis.
    Zhou J; Zou M; Xu S; Li X; Song J; Qi Y
    Microsc Res Tech; 2022 Mar; 85(3):861-874. PubMed ID: 34664756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lightweight, biological structure with tailored stiffness: The feather vane.
    Sullivan TN; Pissarenko A; Herrera SA; Kisailus D; Lubarda VA; Meyers MA
    Acta Biomater; 2016 Sep; 41():27-39. PubMed ID: 27184403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural tissue-engineering in the rachis and barbs of bird feathers.
    Lingham-Soliar T
    Sci Rep; 2017 Mar; 7():45162. PubMed ID: 28345593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis.
    Zou M; Zhou J; Xu L; Song J; Liu S; Li X
    Micron; 2019 Nov; 126():102735. PubMed ID: 31450186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexural stiffness of feather shafts: geometry rules over material properties.
    Bachmann T; Emmerlich J; Baumgartner W; Schneider JM; Wagner H
    J Exp Biol; 2012 Feb; 215(Pt 3):405-15. PubMed ID: 22246249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Stochastic Loading on Tensile Damage and Fracture of Fiber-Reinforced Ceramic-Matrix Composites.
    Li L
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and structural characterization of discontinuous fiber-reinforced dental resin composite.
    Bijelic-Donova J; Garoushi S; Lassila LV; Keulemans F; Vallittu PK
    J Dent; 2016 Sep; 52():70-8. PubMed ID: 27449703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.