These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35054861)

  • 1. Self-Assembling Lectin Nano-Block Oligomers Enhance Binding Avidity to Glycans.
    Irumagawa S; Hiemori K; Saito S; Tateno H; Arai R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks.
    Kobayashi N; Inano K; Sasahara K; Sato T; Miyazawa K; Fukuma T; Hecht MH; Song C; Murata K; Arai R
    ACS Synth Biol; 2018 May; 7(5):1381-1394. PubMed ID: 29690759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Cages and Nanostructures Constructed from Protein Nanobuilding Blocks.
    Kobayashi N; Arai R
    Methods Mol Biol; 2023; 2671():79-94. PubMed ID: 37308639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein.
    Kobayashi N; Yanase K; Sato T; Unzai S; Hecht MH; Arai R
    J Am Chem Soc; 2015 Sep; 137(35):11285-93. PubMed ID: 26120734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperstable
    Kimura N; Mochizuki K; Umezawa K; Hecht MH; Arai R
    ACS Synth Biol; 2020 Feb; 9(2):254-259. PubMed ID: 31951376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of helical linkers for fusion proteins and protein-based nanostructures.
    Arai R
    Methods Enzymol; 2021; 647():209-230. PubMed ID: 33482989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Domain-swapped dimeric structure of a stable and functional de novo four-helix bundle protein, WA20.
    Arai R; Kobayashi N; Kimura A; Sato T; Matsuo K; Wang AF; Platt JM; Bradley LH; Hecht MH
    J Phys Chem B; 2012 Jun; 116(23):6789-97. PubMed ID: 22397676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin-Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly.
    Budhadev D; Poole E; Nehlmeier I; Liu Y; Hooper J; Kalverda E; Akshath US; Hondow N; Turnbull WB; Pöhlmann S; Guo Y; Zhou D
    J Am Chem Soc; 2020 Oct; 142(42):18022-18034. PubMed ID: 32935985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-angle X-ray scattering to obtain models of multivalent lectin-glycan complexes.
    Weeks SD; Bouckaert J
    Methods Mol Biol; 2014; 1200():511-26. PubMed ID: 25117261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus.
    Buts L; Dao-Thi MH; Loris R; Wyns L; Etzler M; Hamelryck T
    J Mol Biol; 2001 May; 309(1):193-201. PubMed ID: 11491289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects.
    Vasta GR; Ahmed H; Bianchet MA; Fernández-Robledo JA; Amzel LM
    Ann N Y Acad Sci; 2012 Apr; 1253():E14-26. PubMed ID: 22973821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation influences the lectin activities of the macrophage mannose receptor.
    Su Y; Bakker T; Harris J; Tsang C; Brown GD; Wormald MR; Gordon S; Dwek RA; Rudd PM; Martinez-Pomares L
    J Biol Chem; 2005 Sep; 280(38):32811-20. PubMed ID: 15983039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis).
    Odom EW; Vasta GR
    J Biol Chem; 2006 Jan; 281(3):1698-713. PubMed ID: 16251191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.
    Kobayashi N; Arai R
    Curr Opin Biotechnol; 2017 Aug; 46():57-65. PubMed ID: 28160725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature-inspired engineering of an F-type lectin for increased binding strength.
    Mahajan S; Ramya TNC
    Glycobiology; 2018 Dec; 28(12):933-948. PubMed ID: 30202877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis).
    Bianchet MA; Odom EW; Vasta GR; Amzel LM
    J Mol Biol; 2010 Aug; 401(2):239-52. PubMed ID: 20561530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus galectin-VIIa binds N-glycans of members of the cortical granule lectin family (xCGL and xCGL2).
    Shoji H; Ikenaka K; Nakakita S; Hayama K; Hirabayashi J; Arata Y; Kasai K; Nishi N; Nakamura T
    Glycobiology; 2005 Jul; 15(7):709-20. PubMed ID: 15761024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of detergents on the oligomeric structures of hemolytic lectin CEL-III as determined by small-angle X-ray scattering.
    Goda S; Sadakata H; Unno H; Hatakeyama T
    Biosci Biotechnol Biochem; 2013; 77(3):679-81. PubMed ID: 23470749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first crystal structure of a Mimosoideae lectin reveals a novel quaternary arrangement of a widespread domain.
    Gallego del Sol F; Nagano C; Cavada BS; Calvete JJ
    J Mol Biol; 2005 Oct; 353(3):574-83. PubMed ID: 16185708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan.
    Kostlánová N; Mitchell EP; Lortat-Jacob H; Oscarson S; Lahmann M; Gilboa-Garber N; Chambat G; Wimmerová M; Imberty A
    J Biol Chem; 2005 Jul; 280(30):27839-49. PubMed ID: 15923179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.