BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35055053)

  • 1. Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements.
    Gooran N; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100.
    Gooran N; Tan SW; Frey SL; Jackman JA
    Langmuir; 2024 Mar; 40(12):6524-6536. PubMed ID: 38478717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy.
    Tan SW; Gooran N; Lim HM; Yoon BK; Jackman JA
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a Triton X-100 replacement for virus inactivation.
    Luo W; Hickman D; Keykhosravani M; Wilson J; Fink J; Huang L; Chen D; O'Donnell S
    Biotechnol Prog; 2020 Nov; 36(6):e3036. PubMed ID: 32533632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy.
    Morandat S; El Kirat K
    Langmuir; 2006 Jun; 22(13):5786-91. PubMed ID: 16768509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation.
    Conley L; Tao Y; Henry A; Koepf E; Cecchini D; Pieracci J; Ghose S
    Biotechnol Bioeng; 2017 Apr; 114(4):813-820. PubMed ID: 27800626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detergent-Mediated Virus Inactivation in Biotechnological Matrices: More than Just CMC.
    Farcet JB; Karbiener M; Zelger L; Kindermann J; Kreil TR
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways of Membrane Solubilization: A Structural Study of Model Lipid Vesicles Exposed to Classical Detergents.
    Bjørnestad VA; Lund R
    Langmuir; 2023 Mar; 39(11):3914-3933. PubMed ID: 36893452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubilization of planar bilayers with detergent.
    Csúcs G; Ramsden JJ
    Biochim Biophys Acta; 1998 Mar; 1369(2):304-8. PubMed ID: 9518662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension.
    Mattei B; Lira RB; Perez KR; Riske KA
    Chem Phys Lipids; 2017 Jan; 202():28-37. PubMed ID: 27913102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study.
    Gooran N; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of "Nereid," a new phenol-free detergent to replace Triton X-100 in virus inactivation.
    Farcet JB; Kindermann J; Karbiener M; Scheinecker R; Kostner O; Kreil TR
    J Med Virol; 2021 Jun; 93(6):3880-3889. PubMed ID: 33274764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of increasing concentrations of nonionic detergent Triton X-100 on solubilization and structure of rat liver and adipose plasma membranes.
    Yegutkin GG
    Membr Cell Biol; 1997; 10(5):515-20. PubMed ID: 9225255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine.
    Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM
    Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in phosphatidylcholine liposomes caused by a mixture of Triton X-100 and sodium dodecyl sulfate.
    de la Maza A; Parra JL
    Biochim Biophys Acta; 1996 Apr; 1300(2):125-34. PubMed ID: 8652638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the standard model of solubilization: Non-ionic surfactants induce collapse of lipid vesicles into rippled bilamellar nanodiscs.
    Bjørnestad VA; Soto-Bustamante F; Tria G; Laurati M; Lund R
    J Colloid Interface Sci; 2023 Jul; 641():553-567. PubMed ID: 36958276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers.
    Yoon BK; Jackman JA; Park S; Mokrzecka N; Cho NJ
    Langmuir; 2019 Mar; 35(9):3568-3575. PubMed ID: 30720282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs.
    Sudbrack TP; Archilha NL; Itri R; Riske KA
    J Phys Chem B; 2011 Jan; 115(2):269-77. PubMed ID: 21171656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular features of nonionic detergents involved in the binding kinetics and solubilization efficiency, as studied in model (Langmuir films) and biological (Erythrocytes) membranes.
    Casadei BR; Domingues CC; Clop EM; Couto VM; Perillo MA; de Paula E
    Colloids Surf B Biointerfaces; 2018 Jun; 166():152-160. PubMed ID: 29571158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
    Caritá AC; Mattei B; Domingues CC; de Paula E; Riske KA
    Langmuir; 2017 Jul; 33(29):7312-7321. PubMed ID: 28474888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.