These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 35055150)

  • 1. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees.
    Cao HX; Vu GTH; Gailing O
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing.
    Ahmar S; Ballesta P; Ali M; Mora-Poblete F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating wood domestication in forest trees through genome editing: Advances and prospects.
    Anders C; Hoengenaert L; Boerjan W
    Curr Opin Plant Biol; 2023 Feb; 71():102329. PubMed ID: 36586396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield.
    Thapliyal G; Bhandari MS; Vemanna RS; Pandey S; Meena RK; Barthwal S
    Crit Rev Biotechnol; 2023 Sep; 43(6):884-903. PubMed ID: 35968912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Based Genome Editing and Its Applications in Woody Plants.
    Min T; Hwarari D; Li D; Movahedi A; Yang L
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding.
    Martín-Valmaseda M; Devin SR; Ortuño-Hernández G; Pérez-Caselles C; Mahdavi SME; Bujdoso G; Salazar JA; Martínez-Gómez P; Alburquerque N
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38068981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of CRISPR/Cas9 mediated gene editing in trees].
    Chen YN; Lu J
    Yi Chuan; 2020 Jul; 42(7):657-668. PubMed ID: 32694105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Sequencing to Genome Editing for Cotton Improvement.
    Peng R; Jones DC; Liu F; Zhang B
    Trends Biotechnol; 2021 Mar; 39(3):221-224. PubMed ID: 32988631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants.
    Kouhen M; García-Caparrós P; Twyman RM; Abdelly C; Mahmoudi H; Schillberg S; Debez A
    Crit Rev Biotechnol; 2023 Jun; 43(4):559-574. PubMed ID: 35606905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type I-D CRISPR System-Mediated Genome Editing in Plants.
    Wada N; Osakabe K; Osakabe Y
    Methods Mol Biol; 2023; 2653():21-38. PubMed ID: 36995617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General guidelines for CRISPR/Cas-based genome editing in plants.
    Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U
    Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future.
    Zhang F; Neik TX; Thomas WJW; Batley J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity.
    Franklin O; Palmroth S; Näsholm T
    Tree Physiol; 2014 Nov; 34(11):1149-66. PubMed ID: 25542897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing and beyond: what does it mean for the future of plant breeding?
    Van Vu T; Das S; Hensel G; Kim JY
    Planta; 2022 May; 255(6):130. PubMed ID: 35587292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.
    Holliday JA; Aitken SN; Cooke JE; Fady B; González-Martínez SC; Heuertz M; Jaramillo-Correa JP; Lexer C; Staton M; Whetten RW; Plomion C
    Mol Ecol; 2017 Feb; 26(3):706-717. PubMed ID: 27997049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection.
    Younessi-Hamzekhanlu M; Gailing O
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.