These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35055200)
21. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration. Liu Q; Feng L; Chen Z; Lan Y; Liu Y; Li D; Yan C; Xu Y Front Bioeng Biotechnol; 2020; 8():697. PubMed ID: 32695767 [TBL] [Abstract][Full Text] [Related]
22. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues. Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143 [TBL] [Abstract][Full Text] [Related]
23. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Holmes B; Castro NJ; Li J; Keidar M; Zhang LG Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974 [TBL] [Abstract][Full Text] [Related]
24. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application. Shrestha BK; Mousa HM; Tiwari AP; Ko SW; Park CH; Kim CS Carbohydr Polym; 2016 Sep; 148():107-14. PubMed ID: 27185121 [TBL] [Abstract][Full Text] [Related]
25. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Lü LX; Wang YY; Mao X; Xiao ZD; Huang NP Biomed Mater; 2012 Feb; 7(1):015002. PubMed ID: 22262727 [TBL] [Abstract][Full Text] [Related]
26. Magnetic Tissue Engineering of the Vocal Fold Using Superparamagnetic Iron Oxide Nanoparticles. Pöttler M; Fliedner A; Bergmann J; Bui LK; Mühlberger M; Braun C; Graw M; Janko C; Friedrich O; Alexiou C; Lyer S Tissue Eng Part A; 2019 Nov; 25(21-22):1470-1477. PubMed ID: 30747035 [TBL] [Abstract][Full Text] [Related]
27. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats. Joshi J; Brennan D; Beachley V; Kothapalli CR J Biomed Mater Res A; 2018 Dec; 106(12):3303-3312. PubMed ID: 30242963 [TBL] [Abstract][Full Text] [Related]
29. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. Prijic S; Scancar J; Romih R; Cemazar M; Bregar VB; Znidarsic A; Sersa G J Membr Biol; 2010 Jul; 236(1):167-79. PubMed ID: 20602230 [TBL] [Abstract][Full Text] [Related]
30. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308 [TBL] [Abstract][Full Text] [Related]
31. Enhanced Homing Technique of Mesenchymal Stem Cells Using Iron Oxide Nanoparticles by Magnetic Attraction in Olfactory-Injured Mouse Models. Yun WS; Choi JS; Ju HM; Kim MH; Choi SJ; Oh ES; Seo YJ; Key J Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734748 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering. Münchow EA; Pankajakshan D; Albuquerque MT; Kamocki K; Piva E; Gregory RL; Bottino MC Clin Oral Investig; 2016 Nov; 20(8):1921-1933. PubMed ID: 26612403 [TBL] [Abstract][Full Text] [Related]
34. Amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles are suitable for monitoring of human mesenchymal stromal cells in vivo. Schulze F; Dienelt A; Geissler S; Zaslansky P; Schoon J; Henzler K; Guttmann P; Gramoun A; Crowe LA; Maurizi L; Vallée JP; Hofmann H; Duda GN; Ode A Small; 2014 Nov; 10(21):4340-51. PubMed ID: 24990430 [TBL] [Abstract][Full Text] [Related]
35. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. Ullah S; Zainol I; Idrus RH Int J Biol Macromol; 2017 Nov; 104(Pt A):1020-1029. PubMed ID: 28668615 [TBL] [Abstract][Full Text] [Related]
36. Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair. Chatzinikolaidou M; Rekstyte S; Danilevicius P; Pontikoglou C; Papadaki H; Farsari M; Vamvakaki M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():301-9. PubMed ID: 25579927 [TBL] [Abstract][Full Text] [Related]
37. Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Damanik FFR; Spadolini G; Rotmans J; Farè S; Moroni L Biomater Sci; 2019 Feb; 7(3):1088-1100. PubMed ID: 30633255 [TBL] [Abstract][Full Text] [Related]
38. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596 [TBL] [Abstract][Full Text] [Related]
39. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications. Briggs T; Matos J; Collins G; Arinzeh TL J Biomed Mater Res A; 2015 Oct; 103(10):3117-27. PubMed ID: 25720595 [TBL] [Abstract][Full Text] [Related]
40. Delivery of platelet-derived growth factor as a chemotactic factor for mesenchymal stem cells by bone-mimetic electrospun scaffolds. Phipps MC; Xu Y; Bellis SL PLoS One; 2012; 7(7):e40831. PubMed ID: 22808271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]