These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35055227)

  • 21. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.
    Chen IW; Liang R; Zhao H; Wang B; Zhang C
    Nanotechnology; 2011 Dec; 22(48):485708. PubMed ID: 22072011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning.
    Kim H; Moon H; Lim D; Jeong W
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn.
    Han M; Kim JK; Lee J; An HK; Yun JP; Kang SW; Jung D
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4011-4014. PubMed ID: 31968415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and Characterization of Solid Composite Yarns from Carbon Nanotubes and Poly(dicyclopentadiene).
    Xin W; Severino J; Venkert A; Yu H; Knorr D; Yang JM; Carlson L; Hicks R; De Rosa I
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32290088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Powered Coiled Carbon-Nanotube Yarn Sensor for Gastric Electronics.
    Jang Y; Kim SM; Kim KJ; Sim HJ; Kim BJ; Park JW; Baughman RH; Ruhparwar A; Kim SJ
    ACS Sens; 2019 Nov; 4(11):2893-2899. PubMed ID: 31525897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.
    Kwon CH; Chun KY; Kim SH; Lee JH; Kim JH; Lima MD; Baughman RH; Kim SJ
    Nanoscale; 2015 Feb; 7(6):2489-96. PubMed ID: 25567113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance.
    Son W; Chun S; Lee JM; Jeon G; Sim HJ; Kim HW; Cho SB; Lee D; Park J; Jeon J; Suh D; Choi C
    ACS Nano; 2022 Feb; 16(2):2661-2671. PubMed ID: 35072453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Super-strong CNT composite yarn with tight CNT packing
    Wei X; Wang J; Ma H; Farha FI; Bi S; Zhang Q; Xu F
    Nanoscale; 2022 Jun; 14(25):9078-9085. PubMed ID: 35708501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinspired Superelastic Electroconductive Fiber for Wearable Electronics.
    Wu J; Wang Z; Liu W; Wang L; Xu F
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44735-44741. PubMed ID: 31663339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications.
    Busolo T; Szewczyk PK; Nair M; Stachewicz U; Kar-Narayan S
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16876-16886. PubMed ID: 33783199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum.
    Gigax JG; Bradford PD; Shao L
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.
    Zhu Z; Song W; Burugapalli K; Moussy F; Li YL; Zhong XH
    Nanotechnology; 2010 Apr; 21(16):165501. PubMed ID: 20348597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn.
    Kim H; Park JW; Hyeon JS; Sim HJ; Jang Y; Shim Y; Huynh C; Baughman RH; Kim SJ
    Biosens Bioelectron; 2020 Sep; 164():112318. PubMed ID: 32479343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling Electronic States of Few-walled Carbon Nanotube Yarn via Joule-annealing and p-type Doping Towards Large Thermoelectric Power Factor.
    Myint MTZ; Nishikawa T; Omoto K; Inoue H; Yamashita Y; Kyaw AKK; Hayashi Y
    Sci Rep; 2020 Apr; 10(1):7307. PubMed ID: 32350391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.
    Randeniya LK; Bendavid A; Martin PJ; Tran CD
    Small; 2010 Aug; 6(16):1806-11. PubMed ID: 20665629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators.
    Li Y; Shang Y; He X; Peng Q; Du S; Shi E; Wu S; Li Z; Li P; Cao A
    ACS Nano; 2013 Sep; 7(9):8128-35. PubMed ID: 23962111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ observation of carbon nanotube yarn during voltage application.
    Tokunaga T; Hayashi Y; Iijima T; Uesugi Y; Unten M; Sasaki K; Yamamoto T
    Micron; 2015 Jul; 74():30-4. PubMed ID: 25939086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns.
    Probst H; Katzer K; Nocke A; Hickmann R; Zimmermann M; Cherif C
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.