BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35055272)

  • 1. Fabrication of a Covalent Triazine Framework Functional Interlayer for High-Performance Lithium-Sulfur Batteries.
    Hu B; Ding B; Xu C; Fan Z; Luo D; Li P; Dou H; Zhang X
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoS
    Ghazi ZA; He X; Khattak AM; Khan NA; Liang B; Iqbal A; Wang J; Sin H; Li L; Tang Z
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28318064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Wide-Temperature Lithium-Sulfur Batteries by Using a Covalent Organic Nanosheet Wrapped Carbon Nanotube.
    Zhu A; Li S; Yang Y; Peng B; Cheng Y; Kang Q; Zhuang Z; Ma L; Xu J
    Small; 2024 Feb; 20(7):e2305494. PubMed ID: 37797191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A TiS
    Yan G; Xu C; Meng Z; Hou M; Yan W; Lin N; Lai L; Zhan D
    Nanoscale; 2020 Dec; 12(48):24368-24375. PubMed ID: 33141142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries.
    Deng X; Li Y; Li L; Qiao S; Lei D; Shi X; Zhang F
    Nanotechnology; 2021 Apr; 32(27):. PubMed ID: 33765671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic Covalent and Spatial Confinement of Sulfur Species by Phthalazinone-Containing Covalent Triazine Frameworks for Ultrahigh Performance of Li-S Batteries.
    Guan R; Zhong L; Wang S; Han D; Xiao M; Sun L; Meng Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8296-8305. PubMed ID: 31985210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Ionic Network/CNT Composite Separator as a Polysulfide Snaring Shield for High Performance Lithium-Sulfur Battery.
    Fan Z; Tao J; Peng S; Yang Y; Stiernet P; Tang J; Wang Y; Pan C; Gu S; Yuan J; Han K; Yu G
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300451. PubMed ID: 37795776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Efficient Ion and Electron Conductive Interlayer To Achieve Low Self-Discharge of Lithium-Sulfur Batteries.
    Xiao S; Huang L; Lv W; He YB
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1783-1790. PubMed ID: 34962756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TiO
    Han H; Niu S; Zhao Y; Tan T; Zhang Y
    Nanoscale Res Lett; 2019 May; 14(1):176. PubMed ID: 31140042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Covalent Triazine Framework Rich in Nitrogen and Oxygen as a Host Material for Lithium-Sulfur Batteries.
    Gao G; Jia Y; Gao H; Shi W; Yu J; Yang Z; Dong Z; Zhao Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50258-50269. PubMed ID: 34637260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium-Sulfur Batteries.
    Cao Y; Wu H; Li G; Liu C; Cao L; Zhang Y; Bao W; Wang H; Yao Y; Liu S; Pan F; Jiang Z; Sun J
    Nano Lett; 2021 Apr; 21(7):2997-3006. PubMed ID: 33764070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-Layer Assembly of CeO
    Li Y; Zhang X; Zhang Q; Cui J; Liang X; Yan J; Liu J; Tan HH; Yu Y; Wu Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18634-18645. PubMed ID: 35412801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lightweight Reduced Graphene Oxide@MoS
    Tan L; Li X; Wang Z; Guo H; Wang J
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3707-3713. PubMed ID: 29300086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Catalytic Conversion of Polysulfides Using Bimetallic Co
    Zeng P; Liu C; Zhao X; Yuan C; Chen Y; Lin H; Zhang L
    ACS Nano; 2020 Sep; 14(9):11558-11569. PubMed ID: 32865976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Ultrathin Functional Polymer-Coated Carbon Nanotube Interlayer for High Performance Lithium-Sulfur Batteries.
    Kim JH; Seo J; Choi J; Shin D; Carter M; Jeon Y; Wang C; Hu L; Paik U
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20092-9. PubMed ID: 27437758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorinated Covalent Organic Framework-Based Nanofluidic Interface for Robust Lithium-Sulfur Batteries.
    Zhang K; Li X; Ma L; Chen F; Chen Z; Yuan Y; Zhao Y; Yang J; Liu J; Xie K; Loh KP
    ACS Nano; 2023 Feb; 17(3):2901-2911. PubMed ID: 36638084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blocking Polysulfides and Facilitating Lithium-Ion Transport: Polystyrene Sulfonate@HKUST-1 Membrane for Lithium-Sulfur Batteries.
    Guo Y; Sun M; Liang H; Ying W; Zeng X; Ying Y; Zhou S; Liang C; Lin Z; Peng X
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30451-30459. PubMed ID: 30117730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-Ablated Red Phosphorus on Carbon Nanotube Film for Accelerating Polysulfide Conversion toward High-Performance and Flexible Lithium-Sulfur Batteries.
    Lee J; Song H; Min KA; Guo Q; Kim D; Zheng Z; Han B; Jung Y; Lee LYS
    Small Methods; 2021 Jul; 5(7):e2100215. PubMed ID: 34928005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwich-Type Nitrogen and Sulfur Codoped Graphene-Backboned Porous Carbon Coated Separator for High Performance Lithium-Sulfur Batteries.
    Chen F; Ma L; Ren J; Luo X; Liu B; Zhou X
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29587467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast polysulfide catalytic conversion and self-repairing ability for high loading lithium-sulfur batteries using a permselective coating layer modified separator.
    Zeng FL; Wang F; Li N; Song KM; Chang S; Shi L; Zhou XY; Wang WK; Jin ZQ; Wang AB; Yuan NY; Ding JN
    Nanoscale; 2021 Oct; 13(41):17592-17602. PubMed ID: 34661594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.