These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35055275)

  • 1. Biocompatible Electrochemical Sensor Based on Platinum-Nickel Alloy Nanoparticles for In Situ Monitoring of Hydrogen Sulfide in Breast Cancer Cells.
    Panda AK; Keerthi M; Sakthivel R; Dhawan U; Liu X; Chung RJ
    Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles.
    Wang R; Liang X; Liu H; Cui L; Zhang X; Liu C
    Mikrochim Acta; 2018 Jun; 185(7):339. PubMed ID: 29946746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene.
    Li R; Deng X; Xia L
    Sci Rep; 2020 Oct; 10(1):16788. PubMed ID: 33033289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Fabrication of Hierarchical rGO/PANI@PtNi Nanocomposite via Microwave-Assisted Treatment for Non-Enzymatic Detection of Hydrogen Peroxide.
    He FG; Yin JY; Sharma G; Kumar A; Stadler FJ; Du B
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive and facile electrochemical detection of hydrogen sulfide in rat brain microdialysate based on competitive binding reaction.
    Li B; Li L; Wang K; Wang C; Zhang L; Liu K; Lin Y
    Anal Bioanal Chem; 2017 Feb; 409(4):1101-1107. PubMed ID: 27822649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3049-57. PubMed ID: 21736289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-stable Electrochemical Sensor for Detection of Caffeic Acid Based on Platinum and Nickel Jagged-Like Nanowires.
    Wang J; Yang B; Gao F; Song P; Li L; Zhang Y; Lu C; Goh MC; Du Y
    Nanoscale Res Lett; 2019 Jan; 14(1):11. PubMed ID: 30623249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H
    Zhao Y; Yang Y; Cui L; Zheng F; Song Q
    Biosens Bioelectron; 2018 Oct; 117():53-59. PubMed ID: 29885580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An indirect detection strategy-assisted self-cleaning electrochemical platform for in-situ and pretreatment-free detection of endogenous H
    Wang Z; Jin X; Guo W; Liu H; Yang T; Zeng H; Luo X
    J Hazard Mater; 2022 Aug; 436():129296. PubMed ID: 35739798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical CNTs@CuMn Layered Double Hydroxide Nanohybrid with Enhanced Electrochemical Performance in H
    Asif M; Aziz A; Wang Z; Ashraf G; Wang J; Luo H; Chen X; Xiao F; Liu H
    Anal Chem; 2019 Mar; 91(6):3912-3920. PubMed ID: 30761890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretchable Electrochemical Sensor Based on a Gold Nanowire and Carbon Nanotube Network for Real-Time Tracking Cell-Released H
    Li J; Zhu C; Peng W; Cao X; Gao H; Jiang M; Wu Z; Yu C
    Anal Chem; 2023 Jan; 95(4):2406-2412. PubMed ID: 36669829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow sphere nickel sulfide nanostructures-based enzyme mimic electrochemical sensor platform for lactic acid in human urine.
    Arivazhagan M; Shankar A; Maduraiveeran G
    Mikrochim Acta; 2020 Jul; 187(8):468. PubMed ID: 32700244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical latent redox ratiometric probes for real-time tracking and quantification of endogenous hydrogen sulfide production in living cells.
    Manibalan K; Mani V; Chang PC; Huang CH; Huang ST; Marchlewicz K; Neethirajan S
    Biosens Bioelectron; 2017 Oct; 96():233-238. PubMed ID: 28500947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly branched gold-copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide.
    Ngamaroonchote A; Sanguansap Y; Wutikhun T; Karn-Orachai K
    Mikrochim Acta; 2020 Sep; 187(10):559. PubMed ID: 32915302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A plasmonic Au-Ag janus nanoprobe for monitoring endogenous hydrogen sulfide generation in living cells.
    Wang J; Luo D; Cai Y; Li XL; Chen HY; Xu JJ
    Biosens Bioelectron; 2022 Oct; 213():114422. PubMed ID: 35667290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells.
    Liu J; Duan C; Zhang W; Ta HT; Yuan J; Zhang R; Xu ZP
    Anal Chim Acta; 2020 Mar; 1103():156-163. PubMed ID: 32081180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of Ammineruthenium(III) by Sulfide Enables In Vivo Electrochemical Monitoring of Free Endogenous Hydrogen Sulfide.
    Wang S; Liu X; Zhang M
    Anal Chem; 2017 May; 89(10):5382-5388. PubMed ID: 28422478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable and Selective Sensing of Hydrogen Sulfide in Living Mouse Brain with NiN
    Pan C; Wu F; Mao J; Wu W; Zhao G; Ji W; Ma W; Yu P; Mao L
    J Am Chem Soc; 2022 Aug; 144(32):14678-14686. PubMed ID: 35925758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of Chemical Sensors for Hydrogen Sulfide Detection in Organisms and Living Cells.
    Yang M; Zhou Y; Wang K; Luo C; Xie M; Shi X; Lin X
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoclusters as fluorescent sensors for selective and sensitive hydrogen sulfide detection.
    Zhang Y; Li M; Niu Q; Gao P; Zhang G; Dong C; Shuang S
    Talanta; 2017 Aug; 171():143-151. PubMed ID: 28551120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.