These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 35055322)
1. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. Arsalan M; Haider A; Choi J; Park KR J Pers Med; 2021 Dec; 12(1):. PubMed ID: 35055322 [TBL] [Abstract][Full Text] [Related]
2. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation. Arsalan M; Owais M; Mahmood T; Cho SW; Park KR J Clin Med; 2019 Sep; 8(9):. PubMed ID: 31514466 [TBL] [Abstract][Full Text] [Related]
3. Feature preserving mesh network for semantic segmentation of retinal vasculature to support ophthalmic disease analysis. Imran SMA; Saleem MW; Hameed MT; Hussain A; Naqvi RA; Lee SW Front Med (Lausanne); 2022; 9():1040562. PubMed ID: 36714120 [TBL] [Abstract][Full Text] [Related]
4. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109 [TBL] [Abstract][Full Text] [Related]
5. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Rong Y; Xiong Y; Li C; Chen Y; Wei P; Wei C; Fan Z Med Biol Eng Comput; 2023 Jul; 61(7):1745-1755. PubMed ID: 36899285 [TBL] [Abstract][Full Text] [Related]
6. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. Memari N; Ramli AR; Bin Saripan MI; Mashohor S; Moghbel M PLoS One; 2017; 12(12):e0188939. PubMed ID: 29228036 [TBL] [Abstract][Full Text] [Related]
7. RFARN: Retinal vessel segmentation based on reverse fusion attention residual network. Liu W; Jiang Y; Zhang J; Ma Z PLoS One; 2021; 16(12):e0257256. PubMed ID: 34860847 [TBL] [Abstract][Full Text] [Related]
8. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418 [TBL] [Abstract][Full Text] [Related]
9. Curv-Net: Curvilinear structure segmentation network based on selective kernel and multi-Bi-ConvLSTM. He Y; Sun H; Yi Y; Chen W; Kong J; Zheng C Med Phys; 2022 May; 49(5):3144-3158. PubMed ID: 35172016 [TBL] [Abstract][Full Text] [Related]
10. Iterative Vessel Segmentation of Fundus Images. Roychowdhury S; Koozekanani DD; Parhi KK IEEE Trans Biomed Eng; 2015 Jul; 62(7):1738-49. PubMed ID: 25700436 [TBL] [Abstract][Full Text] [Related]
11. Towards Automated Eye Diagnosis: An Improved Retinal Vessel Segmentation Framework Using Ensemble Block Matching 3D Filter. Naveed K; Abdullah F; Madni HA; Khan MAU; Khan TM; Naqvi SS Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33445723 [TBL] [Abstract][Full Text] [Related]
12. Unsupervised domain adaptation multi-level adversarial learning-based crossing-domain retinal vessel segmentation. Liu J; Zhao J; Xiao J; Zhao G; Xu P; Yang Y; Gong S Comput Biol Med; 2024 Aug; 178():108759. PubMed ID: 38917530 [TBL] [Abstract][Full Text] [Related]
13. Multi-level spatial-temporal and attentional information deep fusion network for retinal vessel segmentation. Huang Y; Deng T Phys Med Biol; 2023 Sep; 68(19):. PubMed ID: 37567227 [No Abstract] [Full Text] [Related]
14. Retinal blood vessel segmentation based on Densely Connected U-Net. Cheng YL; Ma MN; Zhang LJ; Jin CJ; Ma L; Zhou Y Math Biosci Eng; 2020 Apr; 17(4):3088-3108. PubMed ID: 32987518 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning-Based Detection of Pigment Signs for Analysis and Diagnosis of Retinitis Pigmentosa. Arsalan M; Baek NR; Owais M; Mahmood T; Park KR Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570943 [TBL] [Abstract][Full Text] [Related]
16. MIC-Net: multi-scale integrated context network for automatic retinal vessel segmentation in fundus image. Wang J; Zhou L; Yuan Z; Wang H; Shi C Math Biosci Eng; 2023 Feb; 20(4):6912-6931. PubMed ID: 37161134 [TBL] [Abstract][Full Text] [Related]
17. NFN+: A novel network followed network for retinal vessel segmentation. Wu Y; Xia Y; Song Y; Zhang Y; Cai W Neural Netw; 2020 Jun; 126():153-162. PubMed ID: 32222424 [TBL] [Abstract][Full Text] [Related]
18. Segmentation of retinal blood vessels by a novel hybrid technique- Principal Component Analysis (PCA) and Contrast Limited Adaptive Histogram Equalization (CLAHE). Sidhu RK; Sachdeva J; Katoch D Microvasc Res; 2023 Jul; 148():104477. PubMed ID: 36746364 [TBL] [Abstract][Full Text] [Related]
19. Accurate Retinal Vessel Segmentation in Color Fundus Images via Fully Attention-Based Networks. Li K; Qi X; Luo Y; Yao Z; Zhou X; Sun M IEEE J Biomed Health Inform; 2021 Jun; 25(6):2071-2081. PubMed ID: 33001809 [TBL] [Abstract][Full Text] [Related]
20. A retinal vessel segmentation network with multiple-dimension attention and adaptive feature fusion. Li J; Gao G; Yang L; Liu Y Comput Biol Med; 2024 Apr; 172():108315. PubMed ID: 38503093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]