BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35055563)

  • 1. Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia.
    Wang Z; Huang Y; Liu T; Zan C; Ling Y; Guo C
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water security in Uzbekistan: implication of return waters on the Amu Darya water quality.
    Crosa G; Stefani F; Bianchi C; Fumagalli A
    Environ Sci Pollut Res Int; 2006 Jan; 13(1):37-42. PubMed ID: 16417130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in water resources and comprehensive assessment of water resource utilization efficiency in the Aral Sea basin, Central Asia.
    Wang X; Cui B; Chen Y; Feng T; Li Z; Fang G
    J Environ Manage; 2024 Feb; 353():120198. PubMed ID: 38308989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agricultural impacts drive longitudinal variations of riverine water quality of the Aral Sea basin (Amu Darya and Syr Darya Rivers), Central Asia.
    Leng P; Zhang Q; Li F; Kulmatov R; Wang G; Qiao Y; Wang J; Peng Y; Tian C; Zhu N; Hirwa H; Khasanov S
    Environ Pollut; 2021 Sep; 284():117405. PubMed ID: 34062430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fixed-mix stochastic fractional programming method for optimizing agricultural irrigation and hydropower generation in Central Asia.
    Zhou YX; Li YP; Huang GH; Zhang YF; Ma Y
    J Contam Hydrol; 2022 Jun; 248():104004. PubMed ID: 35428022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bi-level chance-constrained programming method for quantifying the effectiveness of water-trading to water-food-ecology nexus in Amu Darya River basin of Central Asia.
    Ma Y; Li YP; Huang GH
    Environ Res; 2020 Apr; 183():109229. PubMed ID: 32062484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The world's water woes.
    Hinrichsen D
    Int Wildl; 1996; ():22-7. PubMed ID: 12294358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin.
    An M; Fan L; Huang J; Yang W; Wu H; Wang X; Khanal R
    PLoS One; 2021; 16(3):e0247604. PubMed ID: 33661966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and seasonal variations in the water quality of the Amu Darya River (Central Asia).
    Crosa G; Froebrich J; Nikolayenko V; Stefani F; Galli P; Calamari D
    Water Res; 2006 Jun; 40(11):2237-45. PubMed ID: 16714044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input-Output Model.
    Liu X; Xiong R; Guo P; Nie L; Shi Q; Li W; Cui J
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the effects of human activity and natural condition on the outflow of Syr Darya River: A stepwise-cluster factorial analysis method.
    Zhai XB; Li YP; Liu YR; Huang GH
    Environ Res; 2021 Mar; 194():110634. PubMed ID: 33359456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and mtDNA data reveal broader distribution of Alburnoides holciki (Teleostei: Leuciscidae) in inland waters of Central Asia.
    Levin B; Thoni R; Artaev O; Bolotovskiy A; Levina M; Rasulov A; Mirzoev N; Simonov E
    Zootaxa; 2019 Jun; 4614(1):zootaxa.4614.1.5. PubMed ID: 31716389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects.
    Liu Y; Wang P; Gojenko B; Yu J; Wei L; Luo D; Xiao T
    Environ Pollut; 2021 Dec; 291():118209. PubMed ID: 34563852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Allocation of Water Resources and Eco-Compensation Mechanism Model Based on the Interval-Fuzzy Two-Stage Stochastic Programming Method for Tingjiang River.
    Hao N; Sun P; Yang L; Qiu Y; Chen Y; Zhao W
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, China.
    Zhang J; Dong Z; Chen T
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of farmland on the surface water of the Aral Sea Region using Multi-source Satellite Data.
    Shi J; Guo Q; Zhao S; Su Y; Shi Y
    PeerJ; 2022; 10():e12920. PubMed ID: 35186494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a Water Supply-Demand Balance Model to Set Priorities for Improvements in Water Supply Systems: A Case Study from the Koshi River Basin, Nepal.
    Zhu R; Fang Y
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrochemical characteristics, trace element sources, and health risk assessment of surface waters in the Amu Darya Basin of Uzbekistan, arid Central Asia.
    Zhan S; Wu J; Jin M
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5269-5281. PubMed ID: 34417973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaporation from the hypersaline Aral Sea in Central Asia.
    Ma X; Huang S; Huang Y; Wang X; Luo Y
    Sci Total Environ; 2024 Jan; 908():168412. PubMed ID: 37939939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sharing the rivers. Overview.
    Postel S
    People Planet; 1996; 5(3):6-9. PubMed ID: 12295717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.