BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35055871)

  • 21. The clustered regularly interspaced short palindromic repeats/associated proteins system for the induction of gene mutations and phenotypic changes in Bombyx mori.
    Song J; Che J; You Z; Ye X; Li J; Ye L; Zhang Y; Qian Q; Zhong B
    Acta Biochim Biophys Sin (Shanghai); 2016 Dec; 48(12):1112-1119. PubMed ID: 27827797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects.
    Li JJ; Shi Y; Wu JN; Li H; Smagghe G; Liu TX
    J Insect Physiol; 2021; 135():104325. PubMed ID: 34743972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.
    Li ZH; Wang J; Xu JP; Wang J; Yang X
    Mil Med Res; 2023 Mar; 10(1):12. PubMed ID: 36895064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications.
    Aman Mohammadi M; Maximiano MR; Hosseini SM; Franco OL
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):483-497. PubMed ID: 36707422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of a germline-expression promoter for genome editing in Bombyx mori.
    Xu J; Chen RM; Chen SQ; Chen K; Tang LM; Yang DH; Yang X; Zhang Y; Song HS; Huang YP
    Insect Sci; 2019 Dec; 26(6):991-999. PubMed ID: 30549429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome Editing and Its Applications in Model Organisms.
    Ma D; Liu F
    Genomics Proteomics Bioinformatics; 2015 Dec; 13(6):336-44. PubMed ID: 26762955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-based knockout reveals that the clock gene timeless is indispensable for regulating circadian behavioral rhythms in Bombyx mori.
    Nartey MA; Sun X; Qin S; Hou CX; Li MW
    Insect Sci; 2021 Oct; 28(5):1414-1425. PubMed ID: 32830431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Applications of the CRISPR/Cas9 system in insects].
    Tong XL; Fang CY; Gai TT; Shi J; Lu C; Dai FY
    Yi Chuan; 2018 Apr; 40(4):266-278. PubMed ID: 29704373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9 Immune System as a Tool for Genome Engineering.
    Hryhorowicz M; Lipiński D; Zeyland J; Słomski R
    Arch Immunol Ther Exp (Warsz); 2017 Jun; 65(3):233-240. PubMed ID: 27699445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: a perfect match for gene functional analysis and crop improvement.
    Alamillo JM; López CM; Martínez Rivas FJ; Torralbo F; Bulut M; Alseekh S
    Curr Opin Biotechnol; 2023 Feb; 79():102876. PubMed ID: 36621223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas gene editing technology and its application prospect in medicinal plants.
    Guo M; Chen H; Dong S; Zhang Z; Luo H
    Chin Med; 2022 Mar; 17(1):33. PubMed ID: 35246186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Editing in Bacteria: CRISPR-Cas and Beyond.
    Arroyo-Olarte RD; Bravo Rodríguez R; Morales-Ríos E
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33920749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Advances in utilizing the endogenous CRISPR-Cas system for genome editing of lactic acid bacteria].
    Zhu Q; Xu C; Zhang S; Xie N; Pang X; Lü J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2447-2458. PubMed ID: 35871616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.