These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations. Li J; Ryde U Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012 [TBL] [Abstract][Full Text] [Related]
26. Mass spectrometric analysis of fluorescent products originating from the molybdenum cofactor. Claassen VP; Oltmann LF; Bettenhaussen CW; Stouthamer AH; van 't Riet J; Pinkse FA; Fokkens RH; Nibbering NM Biochem Int; 1984 Jan; 8(1):127-34. PubMed ID: 6548140 [TBL] [Abstract][Full Text] [Related]
27. Studies by electron-paramagnetic-resonance spectroscopy of the environment of the metal in the molybdenum cofactor of molybdenum-containing enzymes. Hawkes TR; Bray RC Biochem J; 1984 Sep; 222(3):587-600. PubMed ID: 6091619 [TBL] [Abstract][Full Text] [Related]
28. The relationship of Mo, molybdopterin, and the cyanolyzable sulfur in the Mo cofactor. Wahl RC; Hageman RV; Rajagopalan KV Arch Biochem Biophys; 1984 Apr; 230(1):264-73. PubMed ID: 6231887 [TBL] [Abstract][Full Text] [Related]
29. Formation of thieno[3,2-g]pterines from the molybdenum cofactor. Ishizuka M; Ushio K; Toraya T; Fukui S Biochem Biophys Res Commun; 1983 Mar; 111(2):537-43. PubMed ID: 6340673 [TBL] [Abstract][Full Text] [Related]
30. Molybdenum hydroxylases in Drosophila. II. Molybdenum cofactor in xanthine dehydrogenase, aldehyde oxidase and pyridoxal oxidase. Warner CK; Finnerty V Mol Gen Genet; 1981; 184(1):92-6. PubMed ID: 6950197 [TBL] [Abstract][Full Text] [Related]
32. Inhibitors of the molybdenum cofactor containing 4-hydroxybenzoyl-CoA reductase. Johannes J; Unciuleac MC; Friedrich T; Warkentin E; Ermler U; Boll M Biochemistry; 2008 Apr; 47(17):4964-72. PubMed ID: 18393440 [TBL] [Abstract][Full Text] [Related]
33. Molybdenum and tungsten in biology. Hille R Trends Biochem Sci; 2002 Jul; 27(7):360-7. PubMed ID: 12114025 [TBL] [Abstract][Full Text] [Related]
34. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Romão MJ; Archer M; Moura I; Moura JJ; LeGall J; Engh R; Schneider M; Hof P; Huber R Science; 1995 Nov; 270(5239):1170-6. PubMed ID: 7502041 [TBL] [Abstract][Full Text] [Related]
35. > or = 95% of xanthine oxidase in human milk is present as the demolybdo form, lacking molybdopterin. Godber B; Sanders S; Harrison R; Eisenthal R; Bray RC Biochem Soc Trans; 1997 Aug; 25(3):519S. PubMed ID: 9388735 [No Abstract] [Full Text] [Related]
36. Biology of the molybdenum cofactor. Mendel RR J Exp Bot; 2007; 58(9):2289-96. PubMed ID: 17351249 [TBL] [Abstract][Full Text] [Related]
37. Effect of exchange of the cysteine molybdenum ligand with selenocysteine on the structure and function of the active site in human sulfite oxidase. Reschke S; Niks D; Wilson H; Sigfridsson KG; Haumann M; Rajagopalan KV; Hille R; Leimkühler S Biochemistry; 2013 Nov; 52(46):8295-303. PubMed ID: 24147957 [TBL] [Abstract][Full Text] [Related]
38. The role of molybdenum in human biology. Coughlan MP J Inherit Metab Dis; 1983; 6 Suppl 1():70-7. PubMed ID: 6312191 [TBL] [Abstract][Full Text] [Related]
39. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications. Canne C; Lowe DJ; Fetzner S; Adams B; Smith AT; Kappl R; Bray RC; Hüttermann J Biochemistry; 1999 Oct; 38(42):14077-87. PubMed ID: 10529255 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family. Lim BS; Donahue JP; Holm RH Inorg Chem; 2000 Jan; 39(2):263-73. PubMed ID: 11272534 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]