These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35055902)
21. Malice at the Gates of Eden: current and future distribution of Lu Z; Liu X; Wang T; Zhang P; Wang Z; Zhang Y; Kriticos DJ; Zalucki MP Bull Entomol Res; 2022 Dec; 112(6):745-757. PubMed ID: 35414375 [TBL] [Abstract][Full Text] [Related]
22. The potential distribution of the Russian wheat aphid (Diuraphis noxia): an updated distribution model including irrigation improves model fit for predicting potential spread. Avila GA; Davidson M; van Helden M; Fagan L Bull Entomol Res; 2019 Feb; 109(1):90-101. PubMed ID: 29665868 [TBL] [Abstract][Full Text] [Related]
23. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Stephens AE; Kriticos DJ; Leriche A Bull Entomol Res; 2007 Aug; 97(4):369-78. PubMed ID: 17645818 [TBL] [Abstract][Full Text] [Related]
24. Predicting Impacts of Climate Change on Northward Range Expansion of Invasive Weeds in South Korea. Hong SH; Lee YH; Lee G; Lee DH; Adhikari P Plants (Basel); 2021 Aug; 10(8):. PubMed ID: 34451649 [TBL] [Abstract][Full Text] [Related]
25. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios. Ge X; He S; Wang T; Yan W; Zong S PLoS One; 2015; 10(10):e0141111. PubMed ID: 26496438 [TBL] [Abstract][Full Text] [Related]
26. Analysis of the Distribution Pattern of Huang Y; Li T; Chen W; Zhang Y; Xu Y; Guo T; Wang S; Liu J; Qin Y Biology (Basel); 2024 Jul; 13(7):. PubMed ID: 39056731 [TBL] [Abstract][Full Text] [Related]
27. [Projection of potential geographic distribution of Apocynum venetum under climate change in northern China]. Yang HF; Zheng JH; Jia XG; Li XJ Zhongguo Zhong Yao Za Zhi; 2017 Mar; 42(6):1118-1124. PubMed ID: 29027426 [TBL] [Abstract][Full Text] [Related]
28. Maximum Entropy Modeling to Predict the Impact of Climate Change on Pine Wilt Disease in China. Tang X; Yuan Y; Li X; Zhang J Front Plant Sci; 2021; 12():652500. PubMed ID: 33968109 [TBL] [Abstract][Full Text] [Related]
29. Assessing the Global Risk of Establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche Models. Kumar S; Neven LG; Zhu H; Zhang R J Econ Entomol; 2015 Aug; 108(4):1708-19. PubMed ID: 26470312 [TBL] [Abstract][Full Text] [Related]
30. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Khormi HM; Kumar L Geospat Health; 2014 May; 8(2):405-15. PubMed ID: 24893017 [TBL] [Abstract][Full Text] [Related]
31. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Berzitis EA; Minigan JN; Hallett RH; Newman JA Glob Chang Biol; 2014 Sep; 20(9):2778-92. PubMed ID: 24616016 [TBL] [Abstract][Full Text] [Related]
32. Current and Potential Future Global Distribution of the Raisin Moth Wang BX; Zhu L; Ma G; Najar-Rodriguez A; Zhang JP; Zhang F; Avila GA; Ma CS Biology (Basel); 2023 Mar; 12(3):. PubMed ID: 36979127 [TBL] [Abstract][Full Text] [Related]
33. Projecting overwintering regions of the beet armyworm, Spodoptera exigua in China using the CLIMEX model. Zheng XL; Wang P; Cheng WJ; Wang XP; Lei CL J Insect Sci; 2012; 12():13. PubMed ID: 22934543 [TBL] [Abstract][Full Text] [Related]
34. Predicting the Potential Global Distribution of the Plum Fruit Moth Yang M; Huo Y; Wang L; Wang J; Zuo S; Pang C; Wang Z; Zhang H; Xu K; Ma K Insects; 2024 Aug; 15(9):. PubMed ID: 39336631 [TBL] [Abstract][Full Text] [Related]
35. Predicting the influence of future climate change on the suitable distribution areas of Elaeagnus angustifolia. Zhang XQ; Li GQ; DU S Ying Yong Sheng Tai Xue Bao; 2018 Oct; 29(10):3213-3220. PubMed ID: 30325145 [TBL] [Abstract][Full Text] [Related]
36. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. Stoeckli S; Felber R; Haye T Int J Biometeorol; 2020 Dec; 64(12):2019-2032. PubMed ID: 32860106 [TBL] [Abstract][Full Text] [Related]
37. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species. González C; Wang O; Strutz SE; González-Salazar C; Sánchez-Cordero V; Sarkar S PLoS Negl Trop Dis; 2010 Jan; 4(1):e585. PubMed ID: 20098495 [TBL] [Abstract][Full Text] [Related]
38. Potential impact of climate change on the geographical distribution of two wild vectors of Chagas disease in Chile: Mepraia spinolai and Mepraia gajardoi. Garrido R; Bacigalupo A; Peña-Gómez F; Bustamante RO; Cattan PE; Gorla DE; Botto-Mahan C Parasit Vectors; 2019 Oct; 12(1):478. PubMed ID: 31610815 [TBL] [Abstract][Full Text] [Related]
39. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. Xie GY; Olson DH; Blaustein AR PLoS One; 2016; 11(8):e0160746. PubMed ID: 27513565 [TBL] [Abstract][Full Text] [Related]
40. Projected climate impacts for the amphibians of the Western hemisphere. Lawler JJ; Shafer SL; Bancroft BA; Blaustein AR Conserv Biol; 2010 Feb; 24(1):38-50. PubMed ID: 20121840 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]