These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35056214)

  • 1. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography.
    Kasi DG; de Graaf MNS; Motreuil-Ragot PA; Frimat JMS; Ferrari MD; Sarro PM; Mastrangeli M; van den Maagdenberg AMJM; Mummery CL; Orlova VV
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography.
    Lai D; Labuz JM; Kim J; Luker GD; Shikanov A; Takayama S
    RSC Adv; 2013 Nov; 3(42):19467-19473. PubMed ID: 24976950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays.
    Choubey A; Dubey K; Bahga SS
    Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Prototyping of Soft Lithography Masters for Microfluidic Devices Using Dry Film Photoresist in a Non-Cleanroom Setting.
    Mukherjee P; Nebuloni F; Gao H; Zhou J; Papautsky I
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial.
    Morbioli GG; Speller NC; Stockton AM
    Anal Chim Acta; 2020 Oct; 1135():150-174. PubMed ID: 33070852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homebrew Photolithography for the Rapid and Low-Cost, "Do It Yourself" Prototyping of Microfluidic Devices.
    Todd D; Krasnogor N
    ACS Omega; 2023 Sep; 8(38):35393-35409. PubMed ID: 37780017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging.
    O'Laughlin R; Forrest E; Hasty J; Hao N
    Bio Protoc; 2023 Aug; 13(15):e4782. PubMed ID: 37575396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo and Soft Lithography for Organ-on-Chip Applications.
    Ferrari E; Nebuloni F; Rasponi M; Occhetta P
    Methods Mol Biol; 2022; 2373():1-19. PubMed ID: 34520003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication.
    Song SH; Kim K; Choi SE; Han S; Lee HS; Kwon S; Park W
    Opt Lett; 2014 Sep; 39(17):5162-5. PubMed ID: 25166099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropatterning with a liquid crystal display (LCD) projector.
    Itoga K; Kobayashi J; Yamato M; Okano T
    Methods Cell Biol; 2014; 119():141-58. PubMed ID: 24439283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics.
    Li Y; Lai SHS; Liu N; Zhang G; Liu L; Lee GB; Li WJ
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer Soft Photolithography Fabrication of Microfluidic Devices Using a Custom-Built Wafer-Scale PDMS Slab Aligner and Cost-Efficient Equipment.
    Nguyen T; Sarkar T; Tran T; Moinuddin SM; Saha D; Ahsan F
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction.
    Deng T; Wu H; Brittain ST; Whitesides GM
    Anal Chem; 2000 Jul; 72(14):3176-80. PubMed ID: 10939384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters.
    Li CW; Cheung CN; Yang J; Tzang CH; Yang M
    Analyst; 2003 Sep; 128(9):1137-42. PubMed ID: 14529020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid fabrication of microchannels using microscale plasma activated templating (microPLAT) generated water molds.
    Chao SH; Carlson R; Meldrum DR
    Lab Chip; 2007 May; 7(5):641-3. PubMed ID: 17476386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.