These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 35056752)
1. High Throughput Identification of the Potential Antioxidant Peptides in Tong X; Guo J Molecules; 2022 Jan; 27(2):. PubMed ID: 35056752 [No Abstract] [Full Text] [Related]
2. Developmental transcriptomics of Chinese cordyceps reveals gene regulatory network and expression profiles of sexual development-related genes. Li X; Wang F; Liu Q; Li Q; Qian Z; Zhang X; Li K; Li W; Dong C BMC Genomics; 2019 May; 20(1):337. PubMed ID: 31054562 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic analysis of the orchestrated molecular mechanisms underlying fruiting body initiation in Chinese cordyceps. Zhao Y; Zhang J; Meng Q; Zhang H; Zhou G; Li M; Wu P; Shu R; Gao X; Guo L; Tong Y; Cheng L; Guo L; Chen C; Qin Q Gene; 2020 Dec; 763():145061. PubMed ID: 32818595 [TBL] [Abstract][Full Text] [Related]
4. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Tong X; Wang F; Zhang H; Bai J; Dong Q; Yue P; Jiang X; Li X; Wang L; Guo J PeerJ; 2021; 9():e10940. PubMed ID: 33717691 [TBL] [Abstract][Full Text] [Related]
5. mRNA-seq and miRNA-seq profiling analyses reveal molecular mechanisms regulating induction of fruiting body in Ophiocordyceps sinensis. Zhang H; Yue P; Tong X; Bai J; Yang J; Guo J Sci Rep; 2021 Jun; 11(1):12944. PubMed ID: 34155233 [TBL] [Abstract][Full Text] [Related]
6. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Zheng P; Xia Y; Xiao G; Xiong C; Hu X; Zhang S; Zheng H; Huang Y; Zhou Y; Wang S; Zhao GP; Liu X; St Leger RJ; Wang C Genome Biol; 2011 Nov; 12(11):R116. PubMed ID: 22112802 [TBL] [Abstract][Full Text] [Related]
7. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). He L; Xiao F; Dou CX; Zhou B; Chen ZH; Wang JY; Wang CG; Xie F Int J Med Mushrooms; 2024; 26(10):41-54. PubMed ID: 39171630 [TBL] [Abstract][Full Text] [Related]
8. Isolation, Culture and Characterization of Hirsutella sinensis Mycelium from Caterpillar Fungus Fruiting Body. Ko YF; Liau JC; Lee CS; Chiu CY; Martel J; Lin CS; Tseng SF; Ojcius DM; Lu CC; Lai HC; Young JD PLoS One; 2017; 12(1):e0168734. PubMed ID: 28046129 [TBL] [Abstract][Full Text] [Related]
9. Identification of microRNA-like RNAs in Ophiocordyceps sinensis. Zhang W; Li X; Ma L; Urrehman U; Bao X; Zhang Y; Zhang CY; Hou D; Zhou Z Sci China Life Sci; 2019 Mar; 62(3):349-356. PubMed ID: 29616410 [TBL] [Abstract][Full Text] [Related]
10. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae. Lu Y; Luo F; Cen K; Xiao G; Yin Y; Li C; Li Z; Zhan S; Zhang H; Wang C BMC Genomics; 2017 Aug; 18(1):668. PubMed ID: 28854898 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Tong X; Zhang H; Wang F; Xue Z; Cao J; Peng C; Guo J PeerJ; 2020; 8():e8379. PubMed ID: 31988806 [No Abstract] [Full Text] [Related]
12. Identification of Ophiocordyceps sinensis and Its Artificially Cultured Ophiocordyceps Mycelia by Ultra-Performance Liquid Chromatography/Orbitrap Fusion Mass Spectrometry and Chemometrics. Zhang P; Li S; Li J; Wei F; Cheng X; Zhang G; Ma S; Liu B Molecules; 2018 Apr; 23(5):. PubMed ID: 29701667 [TBL] [Abstract][Full Text] [Related]
13. Fruiting Body Production of the Medicinal Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes), in Artificial Medium. Cao L; Ye Y; Han R Int J Med Mushrooms; 2015; 17(11):1107-12. PubMed ID: 26853966 [TBL] [Abstract][Full Text] [Related]
14. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis. Wang Y; Tong L; Yang L; Ren B; Guo D Phytochem Anal; 2024 Mar; 35(2):308-320. PubMed ID: 37779226 [TBL] [Abstract][Full Text] [Related]
15. On the reliability of fungal materials used in studies on Ophiocordyceps sinensis. Dong CH; Yao YJ J Ind Microbiol Biotechnol; 2011 Aug; 38(8):1027-35. PubMed ID: 20922458 [TBL] [Abstract][Full Text] [Related]
16. The pharmacological properties of Ophiocordyceps xuefengensis revealed by transcriptome analysis. Jin J; Kang W; Zhong C; Qin Y; Zhou R; Liu H; Xie J; Chen L; Qin Y; Zhang S J Ethnopharmacol; 2018 Jun; 219():195-201. PubMed ID: 29481852 [TBL] [Abstract][Full Text] [Related]
17. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis. Zhang J; Wang N; Chen W; Zhang W; Zhang H; Yu H; Yi Y Food Res Int; 2023 Jan; 163():112275. PubMed ID: 36596185 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. Yin Y; Yu G; Chen Y; Jiang S; Wang M; Jin Y; Lan X; Liang Y; Sun H PLoS One; 2012; 7(12):e51853. PubMed ID: 23251642 [TBL] [Abstract][Full Text] [Related]
19. Expression profiling of Cordyceps DnaJ protein family in Tolypocladium guangdongense during developmental and temperature stress processes. Wang G; Li M; Cheng H; Zhang C; Deng W; Li T Gene; 2020 Jun; 743():144563. PubMed ID: 32165290 [TBL] [Abstract][Full Text] [Related]
20. Profile of Ophiocordyceps sinensis transcriptome and differentially expressed genes in three different mycelia, sclerotium and fruiting body developmental stages. Zhong X; Gu L; Wang H; Lian D; Zheng Y; Zhou S; Zhou W; Gu J; Zhang G; Liu X Fungal Biol; 2018 Oct; 122(10):943-951. PubMed ID: 30227930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]