These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 35056752)
21. Uncovering fungal community composition in natural habitat of Ophiocordyceps sinensis using high-throughput sequencing and culture-dependent approaches. Zhang CB; Ren CH; Wang YL; Wang QQ; Wang YS; Weng QB BMC Microbiol; 2020 Nov; 20(1):331. PubMed ID: 33138775 [TBL] [Abstract][Full Text] [Related]
22. A New High-Quality Draft Genome Assembly of the Chinese Cordyceps Ophiocordyceps sinensis. Shu R; Zhang J; Meng Q; Zhang H; Zhou G; Li M; Wu P; Zhao Y; Chen C; Qin Q Genome Biol Evol; 2020 Jul; 12(7):1074-1079. PubMed ID: 32579174 [TBL] [Abstract][Full Text] [Related]
23. Cytological Characterization of Anamorphic Fungus Lecanicillium pui and Its Relationship with Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes). Lei W; Zhang G; Wu G; Liu X Int J Med Mushrooms; 2016; 18(1):75-81. PubMed ID: 27279447 [TBL] [Abstract][Full Text] [Related]
24. Identification of microRNA-like RNAs in Cordyceps guangdongensis and their expression profile under differential developmental stages. Wang G; Li M; Zhang C; Zhan N; Cheng H; Gao Y; Sun C; Deng W; Li T Fungal Genet Biol; 2021 Feb; 147():103505. PubMed ID: 33347973 [TBL] [Abstract][Full Text] [Related]
25. High-throughput sequencing-based analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity. Xia F; Chen X; Guo MY; Bai XH; Liu Y; Shen GR; Li YL; Lin J; Zhou XW Sci Rep; 2016 Sep; 6():33437. PubMed ID: 27625176 [TBL] [Abstract][Full Text] [Related]
26. Antioxidant-Rich Peptide Fractions Derived from High-Altitude Chinese Caterpillar Medicinal Mushroom Ophiocordyceps sinensis (Ascomycetes) Inhibit Bacterial Pathogens. Mishra J; Rajput R; Singh K; Bansal A; Misra K Int J Med Mushrooms; 2019; 21(2):155-168. PubMed ID: 30806222 [TBL] [Abstract][Full Text] [Related]
27. Selenium enrichment on Cordyceps militaris link and analysis on its main active components. Dong JZ; Lei C; Ai XR; Wang Y Appl Biochem Biotechnol; 2012 Mar; 166(5):1215-24. PubMed ID: 22246726 [TBL] [Abstract][Full Text] [Related]
28. Cloning and analysis of the MAT1-2-1 gene from the traditional Chinese medicinal fungus Ophiocordyceps sinensis. Zhang S; Zhang YJ; Liu XZ; Wen HA; Wang M; Liu DS Fungal Biol; 2011 Aug; 115(8):708-14. PubMed ID: 21802050 [TBL] [Abstract][Full Text] [Related]
29. Stage- and Rearing-Dependent Metabolomics Profiling of Tang R; Qiu XH; Cao L; Long HL; Han RC Insects; 2021 Jul; 12(8):. PubMed ID: 34442232 [TBL] [Abstract][Full Text] [Related]
30. A comparative proteomic characterization and nutritional assessment of naturally- and artificially-cultivated Cordyceps sinensis. Zhang X; Liu Q; Zhou W; Li P; Alolga RN; Qi LW; Yin X J Proteomics; 2018 Jun; 181():24-35. PubMed ID: 29609095 [TBL] [Abstract][Full Text] [Related]
31. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Zhang J; Wang F; Yang Y; Wang Y; Dong C Environ Microbiol; 2020 Jan; 22(1):466-482. PubMed ID: 31742850 [TBL] [Abstract][Full Text] [Related]
32. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Yang T; Guo M; Yang H; Guo S; Dong C Appl Microbiol Biotechnol; 2016 Jan; 100(2):743-55. PubMed ID: 26476643 [TBL] [Abstract][Full Text] [Related]
33. Functional convergence and divergence of mating-type genes fulfilling in Cordyceps militaris. Lu Y; Xia Y; Luo F; Dong C; Wang C Fungal Genet Biol; 2016 Mar; 88():35-43. PubMed ID: 26812121 [TBL] [Abstract][Full Text] [Related]
34. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao ( Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients. Lo HC; Hsieh C; Lin FY; Hsu TH J Tradit Complement Med; 2013 Jan; 3(1):16-32. PubMed ID: 24716152 [TBL] [Abstract][Full Text] [Related]
35. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. Zhang B; Li B; Men XH; Xu ZW; Wu H; Qin XT; Xu F; Teng Y; Yuan SJ; Jin LQ; Liu ZQ; Zheng YG BMC Genomics; 2020 Dec; 21(1):886. PubMed ID: 33308160 [TBL] [Abstract][Full Text] [Related]
36. Analysis of Metabolic Profiles and Antioxidant Activity of Chinese Cordyceps, He M; Tang CY; Wang T; Xiao MJ; Li YL; Li XZ Biology (Basel); 2024 Aug; 13(9):. PubMed ID: 39336110 [TBL] [Abstract][Full Text] [Related]
37. Differential coexistence of multiple genotypes of Ophiocordyceps sinensis in the stromata, ascocarps and ascospores of natural Cordyceps sinensis. Li YL; Li XZ; Yao YS; Wu ZM; Gao L; Tan NZ; Luo ZQ; Xie WD; Wu JY; Zhu JS PLoS One; 2023; 18(3):e0270776. PubMed ID: 36893131 [TBL] [Abstract][Full Text] [Related]
38. Rhf1 gene is involved in the fruiting body production of Cordyceps militaris fungus. Jiang K; Han R J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1183-96. PubMed ID: 26047996 [TBL] [Abstract][Full Text] [Related]
39. Changes in transcriptomic and metabolomic profiles of morphotypes of Ophiocordyceps sinensis within the hemocoel of its host larvae, Thitarodes xiaojinensis. Li M; Meng Q; Zhang H; Shu R; Zhao Y; Wu P; Li X; Zhou G; Qin Q; Zhang J BMC Genomics; 2020 Nov; 21(1):789. PubMed ID: 33176684 [TBL] [Abstract][Full Text] [Related]
40. Fractional extraction and structural characterization of glycogen particles from the whole cultivated caterpillar fungus Ophiocordyceps sinensis. Liu QH; Zhang YD; Ma ZW; Qian ZM; Jiang ZH; Zhang W; Wang L Int J Biol Macromol; 2023 Feb; 229():507-514. PubMed ID: 36603712 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]