BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 35056851)

  • 1. Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development.
    Quemener AM; Centomo ML; Sax SL; Panella R
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense oligonucleotide: A promising therapeutic option to beat COVID-19.
    Quemener AM; Galibert MD
    Wiley Interdiscip Rev RNA; 2022 Jul; 13(4):e1703. PubMed ID: 34842345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The powerful world of antisense oligonucleotides: From bench to bedside.
    Quemener AM; Bachelot L; Forestier A; Donnou-Fournet E; Gilot D; Galibert MD
    Wiley Interdiscip Rev RNA; 2020 Sep; 11(5):e1594. PubMed ID: 32233021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intranasal ASO therapeutic targeting SARS-CoV-2.
    Zhu C; Lee JY; Woo JZ; Xu L; Nguyenla X; Yamashiro LH; Ji F; Biering SB; Van Dis E; Gonzalez F; Fox D; Wehri E; Rustagi A; Pinsky BA; Schaletzky J; Blish CA; Chiu C; Harris E; Sadreyev RI; Stanley S; Kauppinen S; Rouskin S; Näär AM
    Nat Commun; 2022 Aug; 13(1):4503. PubMed ID: 35922434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides.
    Oh SY; Ju Y; Park H
    Mol Cells; 2009 Oct; 28(4):341-5. PubMed ID: 19812898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense oligonucleotides to therapeutically target SARS-CoV-2 infection.
    Qiao Y; Wotring JW; Zhang CJ; Jiang X; Xiao L; Watt A; Gattis D; Scandalis E; Freier S; Zheng Y; Pretto CD; Ellison SJ; Swayze EE; Guo S; Sexton JZ; Chinnaiyan AM
    PLoS One; 2023; 18(2):e0281281. PubMed ID: 36735698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization.
    Mahajan S; Zhao H; Kovacina K; Lachacz E; Hoxha S; Chan J; Liang M
    Bioanalysis; 2022 May; 14(9):603-613. PubMed ID: 35578971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases.
    Chen S; Heendeniya SN; Le BT; Rahimizadeh K; Rabiee N; Zahra QUA; Veedu RN
    BioDrugs; 2024 Mar; 38(2):177-203. PubMed ID: 38252341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense drug discovery and development technology considered in a pharmacological context.
    Crooke ST; Liang XH; Crooke RM; Baker BF; Geary RS
    Biochem Pharmacol; 2021 Jul; 189():114196. PubMed ID: 32800852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medicinal Chemistry of Antisense Oligonucleotides for Therapeutic Use in SARS-CoV-2: Design Strategies and Challenges for Targeted Delivery.
    Nedaeinia R; Ranjbar M; Goli M; Etebari M; Safabakhsh S; Bayram H; Ferns GA; Tehrani HM; Salehi R
    Curr Med Chem; 2024 Jun; ():. PubMed ID: 38860908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges.
    Yu AM; Choi YH; Tu MJ
    Pharmacol Rev; 2020 Oct; 72(4):862-898. PubMed ID: 32929000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicology of antisense therapeutics.
    Jason TL; Koropatnick J; Berg RW
    Toxicol Appl Pharmacol; 2004 Nov; 201(1):66-83. PubMed ID: 15519609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Potent Antisense Oligonucleotides Locked Nucleic Acid Gapmers Targeting the SARS-CoV-2 RNA Genome.
    Dauksaite V; Tas A; Wachowius F; Spruit A; van Hemert MJ; Snijder EJ; van der Veer EP; van Zonneveld AJ
    Nucleic Acid Ther; 2023 Dec; 33(6):381-385. PubMed ID: 37782140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination.
    Yu AM; Tu MJ
    Pharmacol Ther; 2022 Feb; 230():107967. PubMed ID: 34403681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translating Antisense Technology into a Treatment for Huntington's Disease.
    Lane RM; Smith A; Baumann T; Gleichmann M; Norris D; Bennett CF; Kordasiewicz H
    Methods Mol Biol; 2018; 1780():497-523. PubMed ID: 29856033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and biotransformation of therapeutic antisense oligonucleotides and conjugates.
    Weidolf L; Björkbom A; Dahlén A; Elebring M; Gennemark P; Hölttä M; Janzén D; Li X; Andersson S
    Drug Discov Today; 2021 Oct; 26(10):2244-2258. PubMed ID: 33862193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.
    Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR
    Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in therapeutic bacterial antisense biotechnology.
    Hegarty JP; Stewart DB
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1055-1065. PubMed ID: 29209794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19.
    Alafeef M; Moitra P; Dighe K; Pan D
    Nat Protoc; 2021 Jun; 16(6):3141-3162. PubMed ID: 33931780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs.
    Migliorati JM; Liu S; Liu A; Gogate A; Nair S; Bahal R; Rasmussen TP; Manautou JE; Zhong XB
    Drug Metab Dispos; 2022 Jun; 50(6):888-897. PubMed ID: 35221287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.