BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 35057037)

  • 1. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application.
    Carvalho BG; Ceccato BT; Michelon M; Han SW; de la Torre LG
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities.
    Mehraji S; DeVoe DL
    Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-Based Microfluidics as a Platform to Design Food-Grade Delivery Systems Based on the Entrapped Compound Type.
    Bianchi JRO; de la Torre LG; Costa ALR
    Foods; 2023 Sep; 12(18):. PubMed ID: 37761094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic production and characterization of biofunctionalized giant unilamellar vesicles for targeted intracellular cargo delivery.
    Staufer O; Antona S; Zhang D; Csatári J; Schröter M; Janiesch JW; Fabritz S; Berger I; Platzman I; Spatz JP
    Biomaterials; 2021 Jan; 264():120203. PubMed ID: 32987317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization.
    Zhang H; Yang J; Sun R; Han S; Yang Z; Teng L
    Acta Pharm Sin B; 2023 Aug; 13(8):3277-3299. PubMed ID: 37655333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications.
    Piunti C; Cimetta E
    Biophys Rev (Melville); 2023 Sep; 4(3):031304. PubMed ID: 38505779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics.
    Shen Y; Gwak H; Han B
    Analyst; 2024 Jan; 149(3):614-637. PubMed ID: 38083968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constant pressure-controlled extrusion method for the preparation of Nano-sized lipid vesicles.
    Morton LA; Saludes JP; Yin H
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22760481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies.
    Ilhan-Ayisigi E; Yaldiz B; Bor G; Yaghmur A; Yesil-Celiktas O
    Colloids Surf B Biointerfaces; 2021 May; 201():111633. PubMed ID: 33639513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications.
    Liu Z; Fontana F; Python A; Hirvonen JT; Santos HA
    Small; 2020 Mar; 16(9):e1904673. PubMed ID: 31702878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merits and advances of microfluidics in the pharmaceutical field: design technologies and future prospects.
    Maged A; Abdelbaset R; Mahmoud AA; Elkasabgy NA
    Drug Deliv; 2022 Dec; 29(1):1549-1570. PubMed ID: 35612293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid Nanovesicles by Microfluidics: Manipulation, Synthesis, and Drug Delivery.
    Liu C; Feng Q; Sun J
    Adv Mater; 2019 Nov; 31(45):e1804788. PubMed ID: 30570773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications.
    Ngocho K; Yang X; Wang Z; Hu C; Yang X; Shi H; Wang K; Liu J
    Small; 2024 Apr; ():e2400086. PubMed ID: 38563581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Development of Biomimetic Nanovesicles Using a Microfluidic Approach.
    Molinaro R; Evangelopoulos M; Hoffman JR; Corbo C; Taraballi F; Martinez JO; Hartman KA; Cosco D; Costa G; Romeo I; Sherman M; Paolino D; Alcaro S; Tasciotti E
    Adv Mater; 2018 Apr; 30(15):e1702749. PubMed ID: 29512198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic methods for production of liposomes.
    Yu B; Lee RJ; Lee LJ
    Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Assembly: An Innovative Tool for the Encapsulation, Protection, and Controlled Release of Nutraceuticals.
    Liu H; Singh RP; Zhang Z; Han X; Liu Y; Hu L
    J Agric Food Chem; 2021 Mar; 69(10):2936-2949. PubMed ID: 33683870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.