BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35057094)

  • 1. Safe and Effective Cynomolgus Monkey GLP-Tox Study with Repetitive Intrathecal Application of a TGFBR2 Targeting LNA-Gapmer Antisense Oligonucleotide as Treatment Candidate for Neurodegenerative Disorders.
    Peters S; Wirkert E; Kuespert S; Heydn R; Johannesen S; Friedrich A; Mailänder S; Korte S; Mecklenburg L; Aigner L; Bruun TH; Bogdahn U
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling.
    Peters S; Kuespert S; Wirkert E; Heydn R; Jurek B; Johannesen S; Hsam O; Korte S; Ludwig FT; Mecklenburg L; Mrowetz H; Altendorfer B; Poupardin R; Petri S; Thal DR; Hermann A; Weishaupt JH; Weis J; Aksoylu IS; Lewandowski SA; Aigner L; Bruun TH; Bogdahn U
    Neurotherapeutics; 2021 Jul; 18(3):1963-1979. PubMed ID: 33860461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2-A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling.
    Kuespert S; Heydn R; Peters S; Wirkert E; Meyer AL; Siebörger M; Johannesen S; Aigner L; Bogdahn U; Bruun TH
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32178467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study.
    Miller TM; Pestronk A; David W; Rothstein J; Simpson E; Appel SH; Andres PL; Mahoney K; Allred P; Alexander K; Ostrow LW; Schoenfeld D; Macklin EA; Norris DA; Manousakis G; Crisp M; Smith R; Bennett CF; Bishop KM; Cudkowicz ME
    Lancet Neurol; 2013 May; 12(5):435-42. PubMed ID: 23541756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of LNA Gapmer Oligonucleotide-Based Therapy for ALS/FTD Caused by the C9orf72 Repeat Expansion.
    Sathyaprakash C; Manzano R; Varela MA; Hashimoto Y; Wood MJA; Talbot K; Aoki Y
    Methods Mol Biol; 2020; 2176():185-208. PubMed ID: 32865792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The TGF-β System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis.
    Peters S; Zitzelsperger E; Kuespert S; Iberl S; Heydn R; Johannesen S; Petri S; Aigner L; Thal DR; Hermann A; Weishaupt JH; Bruun TH; Bogdahn U
    Front Neurol; 2017; 8():669. PubMed ID: 29326641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonizing bone morphogenetic protein 4 attenuates disease progression in a rat model of amyotrophic lateral sclerosis.
    Shijo T; Warita H; Suzuki N; Ikeda K; Mitsuzawa S; Akiyama T; Ono H; Nishiyama A; Izumi R; Kitajima Y; Aoki M
    Exp Neurol; 2018 Sep; 307():164-179. PubMed ID: 29932880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-Finding Study and Pharmacokinetics Profile of the Novel 13-Mer Antisense miR-221 Inhibitor in Sprague-Dawley Rats.
    Di Martino MT; Arbitrio M; Caracciolo D; Scionti F; Tagliaferri P; Tassone P
    Mol Ther Nucleic Acids; 2020 Jun; 20():73-85. PubMed ID: 32146420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Investigation into the Potential of Targeting
    Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of gapmer antisense oligonucleotide with deoxyribonucleic guanidine (DNG) modifications.
    Kojima N; Shrestha AR; Akisawa T; Piao H; Kizawa H; Ohmiya Y; Kurita R
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(1-3):258-269. PubMed ID: 31556356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis.
    Oh KW; Moon C; Kim HY; Oh SI; Park J; Lee JH; Chang IY; Kim KS; Kim SH
    Stem Cells Transl Med; 2015 Jun; 4(6):590-7. PubMed ID: 25934946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety, Tolerability, and Pharmacodynamics of Intrathecal Injection of Recombinant Human HGF (KP-100) in Subjects With Amyotrophic Lateral Sclerosis: A Phase I Trial.
    Warita H; Kato M; Asada R; Yamashita A; Hayata D; Adachi K; Aoki M
    J Clin Pharmacol; 2019 May; 59(5):677-687. PubMed ID: 30536581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model.
    Yan L; Jiang B; Niu Y; Wang H; Li E; Yan Y; Sun H; Duan Y; Chang S; Chen G; Ji W; Xu RH; Si W
    Cell Death Discov; 2018; 4():28. PubMed ID: 30131877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice.
    Kakiuchi-Kiyota S; Koza-Taylor PH; Mantena SR; Nelms LF; Enayetallah AE; Hollingshead BD; Burdick AD; Reed LA; Warneke JA; Whiteley LO; Ryan AM; Mathialagan N
    Toxicol Sci; 2014 Mar; 138(1):234-48. PubMed ID: 24336348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Sensitive In Vitro Approach to Assess the Hybridization-Dependent Toxic Potential of High Affinity Gapmer Oligonucleotides.
    Dieckmann A; Hagedorn PH; Burki Y; Brügmann C; Berrera M; Ebeling M; Singer T; Schuler F
    Mol Ther Nucleic Acids; 2018 Mar; 10():45-54. PubMed ID: 29499955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1
    Izrael M; Slutsky SG; Admoni T; Cohen L; Granit A; Hasson A; Itskovitz-Eldor J; Krush Paker L; Kuperstein G; Lavon N; Yehezkel Ionescu S; Solmesky LJ; Zaguri R; Zhuravlev A; Volman E; Chebath J; Revel M
    Stem Cell Res Ther; 2018 Jun; 9(1):152. PubMed ID: 29871694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense oligonucleotides on neurobehavior, respiratory, and cardiovascular function, and hERG channel current studies.
    Kim TW; Kim KS; Seo JW; Park SY; Henry SP
    J Pharmacol Toxicol Methods; 2014; 69(1):49-60. PubMed ID: 24211663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system.
    Sullivan JM; Mazur C; Wolf DA; Horky L; Currier N; Fitzsimmons B; Hesterman J; Pauplis R; Haller S; Powers B; Tayefeh L; DeBrosse-Serra B; Hoppin J; Kordasiewicz H; Swayze EE; Verma A
    J Transl Med; 2020 Aug; 18(1):309. PubMed ID: 32771027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reference values of hematological and biochemical parameters in young-adult cynomolgus monkey (
    Koo BS; Lee DH; Kang P; Jeong KJ; Lee S; Kim K; Lee Y; Huh JW; Kim YH; Park SJ; Jin YB; Kim SU; Kim JS; Son Y; Lee SR
    Lab Anim Res; 2019; 35():7. PubMed ID: 32257895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety.
    Schlingensiepen R; Goldbrunner M; Szyrach MN; Stauder G; Jachimczak P; Bogdahn U; Schulmeyer F; Hau P; Schlingensiepen KH
    Oligonucleotides; 2005; 15(2):94-104. PubMed ID: 15989424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.