BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 35057127)

  • 1. High Thermoelectric Performance Achieved in Sb-Doped GeTe by Manipulating Carrier Concentration and Nanoscale Twin Grains.
    Li C; Song H; Dai Z; Zhao Z; Liu C; Yang H; Cui C; Miao L
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacancy Suppression Induced Synergetic Optimization of Thermoelectric Performance in Sb-Doped GeTe Evidenced by Positron Annihilation Spectroscopy.
    Zhang T; Qi N; Su X; Tang X; Chen Z
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40665-40675. PubMed ID: 37585556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of non-equilibrium process for high thermoelectric performance Sb-doped GeTe.
    Nshimyimana E; Su X; Xie H; Liu W; Deng R; Luo T; Yan Y; Tang X
    Sci Bull (Beijing); 2018 Jun; 63(11):717-725. PubMed ID: 36658821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance.
    Wang X; Xue W; Zhang Z; Li X; Yin L; Chen C; Yu B; Sui J; Cao F; Liu X; Mao J; Wang Y; Lin X; Zhang Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45717-45725. PubMed ID: 34541842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material.
    Shuai J; Sun Y; Tan X; Mori T
    Small; 2020 Apr; 16(13):e1906921. PubMed ID: 32105400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance.
    Zheng Z; Su X; Deng R; Stoumpos C; Xie H; Liu W; Yan Y; Hao S; Uher C; Wolverton C; Kanatzidis MG; Tang X
    J Am Chem Soc; 2018 Feb; 140(7):2673-2686. PubMed ID: 29350916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe.
    Cai Z; Zheng K; Ma C; Fang Y; Ma Y; Deng Q; Li H
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry in Advancing Thermoelectric GeTe Materials.
    Hong M; Chen ZG
    Acc Chem Res; 2022 Nov; 55(21):3178-3190. PubMed ID: 36223096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe.
    Xing T; Zhu C; Song Q; Huang H; Xiao J; Ren D; Shi M; Qiu P; Shi X; Xu F; Chen L
    Adv Mater; 2021 Apr; 33(17):e2008773. PubMed ID: 33760288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics.
    Li J; Chen Z; Zhang X; Yu H; Wu Z; Xie H; Chen Y; Pei Y
    Adv Sci (Weinh); 2017 Dec; 4(12):1700341. PubMed ID: 29270343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe.
    Liu H; Zhang X; Li J; Bu Z; Meng X; Ang R; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30756-30762. PubMed ID: 31386339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superior performance and high service stability for GeTe-based thermoelectric compounds.
    Xing T; Song Q; Qiu P; Zhang Q; Xia X; Liao J; Liu R; Huang H; Yang J; Bai S; Ren D; Shi X; Chen L
    Natl Sci Rev; 2019 Oct; 6(5):944-954. PubMed ID: 34691955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping.
    Liu Z; Sun J; Mao J; Zhu H; Ren W; Zhou J; Wang Z; Singh DJ; Sui J; Chu CW; Ren Z
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5332-5337. PubMed ID: 29735697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Thermoelectric Performance in Ge
    Xie L; Liu R; Zhu C; Bu Z; Qiu W; Liu J; Xu F; Pei Y; Bai S; Chen L
    Small; 2021 Jun; 17(25):e2100915. PubMed ID: 34032385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)
    Samanta M; Biswas K
    J Am Chem Soc; 2017 Jul; 139(27):9382-9391. PubMed ID: 28625055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized electronic properties and nano-structural features for securing high thermoelectric performance in doped GeTe.
    Yang Z; Tseng YC; Meledath Valiyaveettil S; Yuan H; Smith E; Chen KH; Huang Y; Zou T; Kycia J; Mozharivskyj Y
    Dalton Trans; 2023 Aug; 52(31):10689-10699. PubMed ID: 37482937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping.
    Li J; Hu Q; He S; Tan X; Deng Q; Zhong Y; Zhang F; Ang R
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37273-37279. PubMed ID: 34319070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating the Configurational Entropy to Improve the Thermoelectric Properties of (GeTe)
    Huang Y; Zhi S; Zhang S; Yao W; Ao W; Zhang C; Liu F; Li J; Hu L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing thermoelectric performance by Fermi level tuning and thermal conductivity degradation in (Ge
    Wei PC; Cai CX; Hsing CR; Wei CM; Yu SH; Wu HJ; Chen CL; Wei DH; Nguyen DL; Chou MMC; Chen YY
    Sci Rep; 2019 Jun; 9(1):8616. PubMed ID: 31197195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.