These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35057152)

  • 1. Influence of Waste Glass Powder Addition on the Microstructure and Mechanical Properties of Autoclaved Building Materials.
    Szudek W; Gołek Ł; Malata G; Pytel Z
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of Waste Glass in Autoclaved Silica-Lime Materials.
    Borek K; Czapik P
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycled Glass as a Substitute for Quartz Sand in Silicate Products.
    Borek K; Czapik P; Dachowski R
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Waste Originating from the Cleaning of Flue Gases from the Combustion of Industrial Wastes as a Lime Partial Replacement in Autoclaved Aerated Concrete.
    Różycka A; Kotwica Ł
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Retreated Lithium Slag with a High Content of Alkali, Sulfate and Fluoride on the Composition and the Microstructure of Autoclaved Aerated Concrete.
    Zhong D; Wei S; Zhou H; He X; Qian B; Ma B; Hu Y; Ren X
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the Computed Tomography Method for the Evaluation of Porosity of Autoclaved Materials.
    Stepien A; Durlej M; Skowera K
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Waste Glass Powder on Rheological and Mechanical Properties of Calcium Carbide Residue Alkali-Activated Composite Cementitious Materials System.
    Chen Y; Wu X; Yin W; Tang S; Yan G
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocomposites Derived from Construction and Demolition Waste for Cement: X-ray Diffraction, Spectroscopic and Mechanical Investigations.
    Rada R; Manea DL; Nowakowski A; Rada S
    Nanomaterials (Basel); 2024 May; 14(10):. PubMed ID: 38786845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective Utilization of Waste Glass as Cementitious Powder and Construction Sand in Mortar.
    Wang Y; Cao Y; Zhang P; Ma AY
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Waste Basalt Powder Addition on the Microstructure and Mechanical Properties of Autoclave Brick.
    Kostrzewa-Demczuk P; Stepien A; Dachowski R; Silva RBD
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and characterization of aluminum-incorporated calcium silicate hydrates (C-S-H) under hydrothermal conditions.
    Qu X; Zhao Z; Zhao X
    RSC Adv; 2018 Aug; 8(49):28198-28208. PubMed ID: 35548169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicomponent Low Initial Molar Ratio of SiO
    Słomka-Słupik B; Wiśniewska P; Bargieł W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Industrial Metakaolin Waste on Autoclaved Fiber Cement Properties Changes in Standard Fire Environment.
    Veliseicik T; Zurauskiene R; Kligys M; Dauksevic M
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of hydrothermally solidified materials from waste cathode ray tube panel glass for construction applications.
    Zhang J; Xu Q; Wang H; Li S
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57516-57522. PubMed ID: 35355179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of next-generation sustainable brick and mortar through geopolymerization of construction debris.
    Rahimpour H; Amini AB; Sharifi F; Fahmi A; Zinatloo-Ajabshir S
    Sci Rep; 2024 May; 14(1):10914. PubMed ID: 38740821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of Waste Glass as an Activator in Class-C Fly Ash/GGBS Based Alkali Activated Material.
    Sasui S; Kim G; Nam J; van Riessen A; Eu H; Chansomsak S; Alam SF; Cho CH
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of NaOH on the Micro-Mechanical Properties of the Interface Transition Zone in Low-Carbon Concrete.
    Li Y; Wang H; Wei L; Guo H; Ma K
    Materials (Basel); 2024 Jan; 17(1):. PubMed ID: 38204110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation.
    Qin L; Gao X
    Waste Manag; 2019 Apr; 89():254-264. PubMed ID: 31079738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Glass Silica Waste Nano Powder on the Mechanical and Microstructure Properties of Alkali-Activated Mortars.
    Samadi M; Shah KW; Huseien GF; Lim NHAS
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32075038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Incorporating Silica Stone Waste on the Mechanical Properties of Sustainable Concretes.
    Abbasi S; Jannaty MH; Faraj RH; Shahbazpanahi S; Mosavi A
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.