These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35057241)
1. Starch as the Flame Retardant for Electrolytes in Lithium-Ion Cells. Pigłowska M; Kurc B; Rymaniak Ł Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057241 [TBL] [Abstract][Full Text] [Related]
2. Thermal Effect and Mechanism Analysis of Flame-Retardant Modified Polymer Electrolyte for Lithium-Ion Battery. Wu ZH; Huang AC; Tang Y; Yang YP; Liu YC; Li ZP; Zhou HL; Huang CF; Xing ZX; Shu CM; Jiang JC Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34064015 [TBL] [Abstract][Full Text] [Related]
3. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Liu K; Liu W; Qiu Y; Kong B; Sun Y; Chen Z; Zhuo D; Lin D; Cui Y Sci Adv; 2017 Jan; 3(1):e1601978. PubMed ID: 28097221 [TBL] [Abstract][Full Text] [Related]
4. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries. Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778 [TBL] [Abstract][Full Text] [Related]
5. Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance. Chen P; Wu Z; Guo T; Zhou Y; Liu M; Xia X; Sun J; Lu L; Ouyang X; Wang X; Fu Y; Zhu J Adv Mater; 2021 Mar; 33(9):e2007549. PubMed ID: 33506541 [TBL] [Abstract][Full Text] [Related]
6. An Intrinsic Flame-Retardant Organic Electrolyte for Safe Lithium-Sulfur Batteries. Yang H; Guo C; Chen J; Naveed A; Yang J; Nuli Y; Wang J Angew Chem Int Ed Engl; 2019 Jan; 58(3):791-795. PubMed ID: 30426649 [TBL] [Abstract][Full Text] [Related]
7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
8. Designing of a Phosphorus, Nitrogen, and Sulfur Three-Flame Retardant Applied in a Gel Poly- Deng N; Liu Y; Wang L; Li Q; Hao Y; Feng Y; Cheng B; Kang W; Zhu W ACS Appl Mater Interfaces; 2019 Oct; 11(40):36705-36716. PubMed ID: 31507166 [TBL] [Abstract][Full Text] [Related]
9. Challenges for Safe Electrolytes Applied in Lithium-Ion Cells-A Review. Pigłowska M; Kurc B; Galiński M; Fuć P; Kamińska M; Szymlet N; Daszkiewicz P Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832183 [TBL] [Abstract][Full Text] [Related]
10. Thermal runaway of Lithium-ion batteries employing LiN(SO Hou J; Lu L; Wang L; Ohma A; Ren D; Feng X; Li Y; Li Y; Ootani I; Han X; Ren W; He X; Nitta Y; Ouyang M Nat Commun; 2020 Oct; 11(1):5100. PubMed ID: 33037217 [TBL] [Abstract][Full Text] [Related]
11. Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Chou LY; Ye Y; Lee HK; Huang W; Xu R; Gao X; Chen R; Wu F; Tsung CK; Cui Y Nano Lett; 2021 Mar; 21(5):2074-2080. PubMed ID: 33596654 [TBL] [Abstract][Full Text] [Related]
12. Abuse-Tolerant Electrolytes for Lithium-Ion Batteries. Chen Z; Chao Y; Li W; Wallace GG; Bussell T; Ding J; Wang C Adv Sci (Weinh); 2021 Jun; 8(11):e2003694. PubMed ID: 34105300 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Flame Retardancy of Microcapsules Based on Ammonium Polyphosphate and Aluminum Hydroxide for Lithium-Ion Batteries. Ma TK; Yang YM; Jiang JJ; Yang M; Jiang JC ACS Omega; 2021 Aug; 6(33):21227-21234. PubMed ID: 34471727 [TBL] [Abstract][Full Text] [Related]
14. A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries. Shin DM; Bachman JE; Taylor MK; Kamcev J; Park JG; Ziebel ME; Velasquez E; Jarenwattananon NN; Sethi GK; Cui Y; Long JR Adv Mater; 2020 Mar; 32(10):e1905771. PubMed ID: 31985110 [TBL] [Abstract][Full Text] [Related]
15. TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Jia H; Wang J; Lin F; Monroe CW; Yang J; NuLi Y Chem Commun (Camb); 2014 Jul; 50(53):7011-3. PubMed ID: 24846751 [TBL] [Abstract][Full Text] [Related]
16. Mg Sheng O; Jin C; Luo J; Yuan H; Huang H; Gan Y; Zhang J; Xia Y; Liang C; Zhang W; Tao X Nano Lett; 2018 May; 18(5):3104-3112. PubMed ID: 29692176 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage. Morales-Ugarte JE; Benayad A; Santini CC; Bouchet R ACS Appl Mater Interfaces; 2019 Jun; 11(24):21955-21964. PubMed ID: 31124650 [TBL] [Abstract][Full Text] [Related]
18. Flame-Retardant, Highly Conductive, and Low-Temperature-Resistant Organic Gel Electrolyte for High-Performance All-Solid Supercapacitors. Wang J; Li X; Yang J; Sun W; Ban Q; Gai L; Gong Y; Xu Z; Liu L ChemSusChem; 2021 May; 14(9):2056-2066. PubMed ID: 33751843 [TBL] [Abstract][Full Text] [Related]
19. Core-Shell Microcapsules Containing Flame Retardant Tris(2-chloroethyl phosphate) for Lithium-Ion Battery Applications. Baginska M; Sottos NR; White SR ACS Omega; 2018 Feb; 3(2):1609-1613. PubMed ID: 30023809 [TBL] [Abstract][Full Text] [Related]
20. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X Front Chem; 2019; 7():522. PubMed ID: 31440498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]