These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35057364)

  • 1. Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms.
    Shang M; Li H; Ahmad A; Ahmad W; Ostrowski KA; Aslam F; Joyklad P; Majka TM
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients.
    Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature.
    Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete.
    Khan K; Ahmad W; Amin MN; Aslam F; Ahmad A; Al-Faiad MA
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Compressive Strength of Fly Ash Based Concrete Using Individual and Ensemble Algorithm.
    Ahmad A; Farooq F; Niewiadomski P; Ostrowski K; Akbar A; Aslam F; Alyousef R
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions.
    Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods.
    Amin MN; Ahmad A; Khan K; Ahmad W; Nazar S; Faraz MI; Alabdullah AA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF.
    Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the Compressive Strength of Ceramic Waste-Based Concrete Using Experiment and Artificial Neural Network (ANN) Approach.
    Song H; Ahmad A; Ostrowski KA; Dudek M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete.
    Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA
    Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques.
    Nafees A; Amin MN; Khan K; Nazir K; Ali M; Javed MF; Aslam F; Musarat MA; Vatin NI
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms.
    Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA; Arab AMA
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concrete with Partial Substitution of Waste Glass and Recycled Concrete Aggregate.
    Ahmad J; Martínez-García R; de-Prado-Gil J; Irshad K; El-Shorbagy MA; Fediuk R; Vatin NI
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches.
    Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y
    Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP.
    Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Investigation and Machine Learning Prediction of Mechanical Properties of Rubberized Concrete for Sustainable Construction.
    Vadivel TS; Suseelan A; Karthick K; Safran M; Alfarhood S
    Sci Rep; 2024 Sep; 14(1):22725. PubMed ID: 39349571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete.
    Yuan X; Tian Y; Ahmad W; Ahmad A; Usanova KI; Mohamed AM; Khallaf R
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete.
    Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Experimental Study on Structural Concrete Containing Recycled Aggregates and Powder from Construction and Demolition Waste.
    Kim J; Grabiec AM; Ubysz A
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Predictive Model for Tensile and Flexural Strength of 3D-Printed Concrete.
    Ali A; Riaz RD; Malik UJ; Abbas SB; Usman M; Shah MU; Kim IH; Hanif A; Faizan M
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.