BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35057688)

  • 1. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion.
    Gui H; Sun L; Liu R; Si X; Li D; Wang Y; Shu C; Sun X; Jiang Q; Qiao Y; Li B; Tian J
    Crit Rev Food Sci Nutr; 2023; 63(22):5953-5966. PubMed ID: 35057688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability of anthocyanins.
    Fang J
    Drug Metab Rev; 2014 Nov; 46(4):508-20. PubMed ID: 25347327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colonic catabolism of ellagitannins, ellagic acid, and raspberry anthocyanins: in vivo and in vitro studies.
    González-Barrio R; Edwards CA; Crozier A
    Drug Metab Dispos; 2011 Sep; 39(9):1680-8. PubMed ID: 21622625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain.
    Talavéra S; Felgines C; Texier O; Besson C; Gil-Izquierdo A; Lamaison JL; Rémésy C
    J Agric Food Chem; 2005 May; 53(10):3902-8. PubMed ID: 15884815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: extensive presystemic metabolism reduces apparent bioavailability.
    Fang J
    J Agric Food Chem; 2014 May; 62(18):3904-11. PubMed ID: 24650097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthocyanins are efficiently absorbed from the small intestine in rats.
    Talavéra S; Felgines C; Texier O; Besson C; Manach C; Lamaison JL; Rémésy C
    J Nutr; 2004 Sep; 134(9):2275-9. PubMed ID: 15333716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption and metabolism of red orange juice anthocyanins in rats.
    Felgines C; Talavéra S; Texier O; Besson C; Fogliano V; Lamaison JL; la Fauci L; Galvano G; Rémésy C; Galvano F
    Br J Nutr; 2006 May; 95(5):898-904. PubMed ID: 16611379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption of anthocyanins through intestinal epithelial cells - Putative involvement of GLUT2.
    Faria A; Pestana D; Azevedo J; Martel F; de Freitas V; Azevedo I; Mateus N; Calhau C
    Mol Nutr Food Res; 2009 Nov; 53(11):1430-7. PubMed ID: 19785001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption and metabolism of cyanidin-3-glucoside and cyanidin-3-rutinoside extracted from wild mulberry (Morus nigra L.) in rats.
    Hassimotto NM; Genovese MI; Lajolo FM
    Nutr Res; 2008 Mar; 28(3):198-207. PubMed ID: 19083408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bioavailability and absorption of anthocyanins: towards a better understanding.
    McGhie TK; Walton MC
    Mol Nutr Food Res; 2007 Jun; 51(6):702-13. PubMed ID: 17533653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat.
    He J; Wallace TC; Keatley KE; Failla ML; Giusti MM
    J Agric Food Chem; 2009 Apr; 57(8):3141-8. PubMed ID: 19317488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora.
    Keppler K; Humpf HU
    Bioorg Med Chem; 2005 Sep; 13(17):5195-205. PubMed ID: 15963727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anthocyanin kinetics are dependent on anthocyanin structure.
    Novotny JA; Clevidence BA; Kurilich AC
    Br J Nutr; 2012 Feb; 107(4):504-9. PubMed ID: 22300834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats.
    Chen Y; Chen H; Zhang W; Ding Y; Zhao T; Zhang M; Mao G; Feng W; Wu X; Yang L
    Food Funct; 2019 Sep; 10(9):6052-6061. PubMed ID: 31486446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation.
    Woodward GM; Needs PW; Kay CD
    Mol Nutr Food Res; 2011 Mar; 55(3):378-86. PubMed ID: 21370450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthocyanin Bioactivity in Obesity and Diabetes: The Essential Role of Glucose Transporters in the Gut and Periphery.
    Solverson P
    Cells; 2020 Nov; 9(11):. PubMed ID: 33233708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N
    J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential Catabolism of an Anthocyanin-Rich Elderberry Extract by Three Gut Microbiota Bacterial Species.
    Bresciani L; Angelino D; Vivas EI; Kerby RL; García-Viguera C; Del Rio D; Rey FE; Mena P
    J Agric Food Chem; 2020 Feb; 68(7):1837-1843. PubMed ID: 30969770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1).
    Ribnicky DM; Roopchand DE; Oren A; Grace M; Poulev A; Lila MA; Havenaar R; Raskin I
    Food Chem; 2014 Jan; 142():349-57. PubMed ID: 24001852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gastrointestinal uptake of nasunin, acylated anthocyanin in eggplant.
    Ichiyanagi T; Terahara N; Rahman MM; Konishi T
    J Agric Food Chem; 2006 Jul; 54(15):5306-12. PubMed ID: 16848510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.